臺式三維原子層沉積系統(tǒng)ALD簡介:
原子層沉積(Atomic layer deposition, ALD)是通過將氣相前驅(qū)體脈沖交替的通入反應器,化學吸附在沉積襯底上并反應形成沉積膜的種方法,,是種可以將物質(zhì)以單原子膜形式逐層的鍍在襯底表面的方法,。因此,它是種真正的“納米"技術(shù),,以精確控制方式實現(xiàn)納米的超薄薄膜沉積,。由于ALD用的是飽和化學吸附的性,因此可以確保對大面積,、多空,、管狀、粉末或其他復雜形狀基體的高保形的均勻沉積,。 | |
美國ARRADIANCE公司的GEMStar XT系列臺式 ALD系統(tǒng),,在小巧的機身(78 x56 x28 cm)中集成了原子層沉積所需的所有功能,,可zui多容納9片8英寸基片同時沉積。GEMStar XT全系配備熱壁,,結(jié)合前驅(qū)體瓶加熱,,管路加熱,橫向噴頭等設(shè)計,, 使溫度均勻性高達99.9%,,氣流對溫度影響減少到0.03%以下。高溫度穩(wěn)定度的設(shè)計不僅實現(xiàn)在 8英寸基體上膜厚的不均勻性小于1%,,而且更適合對超高長徑比的孔徑結(jié)構(gòu)等3D結(jié)構(gòu)實現(xiàn)均勻薄膜覆蓋,,可實現(xiàn)對高達1500:1長徑比微納深孔內(nèi)部的均勻沉積。 |
GEMStar XT 產(chǎn)品點: l 300℃ 鋁合金熱壁,,對流式溫度控制 l 175℃溫控150ml前驅(qū)體瓶,,200℃溫控輸運支管 l 可容納多片4,6,,8英寸樣品同時沉積 l 可容納1.25英寸/32mm厚度的基體 l 標準CF-40接口 l 可安裝原位測量或粉末沉積模塊等選件 l 等離子體輔助ALD插件 l 多種配件可供選擇 | GEMStar XT 產(chǎn)品型號: GEMStar -4 XT: l zui大4英寸/100 mm基片沉積 l 單路前驅(qū)體輸運支管,, 4路前驅(qū)體瓶接口 l 不可升為等離子體增強ALD GEMStar -6/8 XT: l zui大6英寸(150mm)/8英寸(200mm)基片沉積 l 雙路前驅(qū)體輸運支管, 8路前驅(qū)體瓶和CF-40接口 l 可升為等離子體增強ALD |
三維原子層沉積系統(tǒng)ALD點 | GEMStar -8 XT-P: l zui大8英寸/200mm基片沉積 l 雙路前驅(qū)體輸運支管,, 8路前驅(qū)體瓶和CF-40接口 l 裝備高性能ICP等離子發(fā)生器 13.56 MHz 的等離子源非常緊湊,,只需風冷,zui高運行功率達300W,。 l 標配3組氣流質(zhì)量控制計(MFC)控制的等離子氣源線,,和條MFC控制的運載氣體線,使難以沉積的氧化物,、氮化物,、金屬也可以實現(xiàn)均勻沉積。 |
豐富配件: | ||
多樣品托盤: l 多樣品夾具,,樣品尺寸(8", 6", 4")向下兼容,。 l 多基片夾具,zui多同時容納9片基片,。{C}{C} | 溫控熱托盤: l 可加熱樣品托盤,,zui高溫度500℃,可實現(xiàn)熱盤-熱壁復合加熱方式,。 {C}{C} | |
尾氣處理系統(tǒng): {C}{C}
| 臭氧發(fā)生器: {C}{C} | |
粉末旋轉(zhuǎn)沉積罐模塊: 配合熱壁加熱方式,,進步實現(xiàn)對微納粉末樣品全保型薄膜均勻沉積包覆。 {C}{C} {C}{C} | ||
手套箱接口: 可從側(cè)面或背面*接入手套箱,,與從底部接入手套箱不同,,不占用手套箱空間。由于主機在手套箱側(cè)面,反應過程中不對手套箱有加熱效應,,不影響手套箱內(nèi)溫度,。
| ||
{C}{C} | {C}{C} | |
{C}{C}{C}{C}{C}{C}
國內(nèi)外用戶
已發(fā)表文獻
1、 Lo?c Assaud et al. Systematic increase of electrocatalytic turnover over nanoporous Pt surfaces Prepared by atomic layer deposition. J. Mater. Chem. A (2015) DOI: 10.1039/c5ta00205b 2,、 Xiangyi Luo et al. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery. Nanotechnology(2015) 26, 164003. DOI:10.1088/0957-4484/26/16/164003 3、 HengweiWang, et al. Precisely-controlled synthesis of Au@Pd core–shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. Journal of Catalysis (2015) 324, 59–68. DOI: 10.1016/j.jcat.2015.01.019 4,、 Sean W. Smith, et al. Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels. J. Vac. Sci. Technol. A (2014) 4, 32 DOI: 10.1116/1.4882239 5,、 Fatemeh Sadat MinayeHashemi et al. A New Resist for Area Selective Atomic and Molecular Layer Deposition on Metal?Dielectric Patterns. J. Phys. Chem. C (2014), 118, 10957?10962. DOI: 10.1021/jp502669f 6、 Jeffrey B. Chou, et.al Enabling Ideal Selective Solar Absorption with 2D Metallic Dielectric Photonic Crystals. Adv. Mater. (2014), DOI: 10.1002/adma.201403302. 7,、 Jin Xie, et al. Site-Selective Deposition of Twinned Platinum Nanoparticles on TiSi2 Nanonets by Atomic Layer Deposition and Their Oxygen Reduction Activities. ACS Nano (2013), 7, 6337–6345. DOI: 10.1021/nn402385f 8,、 Pengcheng Dai, et al. Solar Hydrogen Generation by Silicon Nanowires Modified with Platinum Nanoparticle Catalysts by Atomic Layer Deposition. Angew. Chem. Int. Ed. (2013), 52, 1 –6. DOI: 10.1002/anie.201303813 9、 Joseph Larkin et al. Slow DNA Transport through Nanoporesin Hafnium Oxide Membranes. ACS Nano (2013), 11, 10121–10128. DOI: 10.1021/nn404326f 10,、 Thomas M et al. Extended lifetime MCP-PMTs: Characterization and lifetime measurements of ALD coated microchannel plates, in a sealed photomultiplier tube Nuclear Instruments and Methods in Physics Research A (2013) 732, 388–391. DOI: 10.1016/j.nima.2013.07.023 11,、 Kevin J. Maloney et al. Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery. APL Mater. 1, 022106 (2013) DOI: 10.1063/1.4818168 12、 Sean W. Smith et al. Improved Temperature Stability of Atomic Layer Deposition Coated Cellulose Nanocrystal Aerogels. Mater. Res. Soc. Symp. Proc. (2012) DOI: 10.1557/opl.2012. |