日韩av大片在线观看欧美成人不卡|午夜先锋看片|中国女人18毛片水多|免费xx高潮喷水|国产大片美女av|丰满老熟妇好大bbbbbbbbbbb|人妻上司四区|japanese人妻少妇乱中文|少妇做爰喷水高潮受不了|美女人妻被颜射的视频,亚洲国产精品久久艾草一,俄罗斯6一一11萝裸体自慰,午夜三级理论在线观看无码

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊(cè)

當(dāng)前位置:
美國(guó)布魯克海文儀器公司>資料下載>測(cè)量應(yīng)用案例-20200705

資料下載

測(cè)量應(yīng)用案例-20200705

閱讀:161          發(fā)布時(shí)間:2020-7-16
提 供 商 美國(guó)布魯克海文儀器公司 資料大小 2.8MB
資料圖片 下載次數(shù) 21次
資料類型 PDF 文件 瀏覽次數(shù) 161次
免費(fèi)下載 點(diǎn)擊下載    

文獻(xiàn)名: Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: a kinetic, equilibrium, and mechanistic investigation

 

作者 Damoon Ranjbar, Milad Raeiszadeh, Lev Lewis, Mark J. MacLachlan & Savvas G. Hatzikiriakos

Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada

 

摘要:A cellulose nanocrystal (CNC) based adsorbent was synthesized by modifying pristine CNC with various amounts of a positively-charged surfactant (CTAB) and was used to study the adsorption behavior of Congo red (CR) in aqueous medium. The interaction of CTAB with CNCs, and potential alterations on the chemical and physical structure of CNCs are studied, and the synthesized adsorbent, modified cellulose nanocrystal (MCNC) was characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, elemental and zeta potential analysis. The amount of surfactant used for modification was optimized to maximize the adsorption capacity of the adsorbent. Furthermore, it was found that the amount of surfactant affects the CR-MCNC interactions and determines the mechanism of adsorption. The kinetics followed a pseudo-second order and intra-particle diffusion model implying that the rate-controlling step of the adsorption process was first dominated by film-diffusion, and consequently by intra-particle diffusion. Thermodynamic studies on the system suggested that the adsorption process is spontaneous and exothermic. Characterization of the adsorbent, before and after adsorption, coupled with the kinetic and isotherm studies indicated that electrostatic attraction, hydrogen bonding, and hydrophobic attraction are the main mechanisms/interactions of adsorption. The adsorbent is highly stable in water and retains its original adsorption capacity after successive dialysis cycles.

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功,!我們將在第一時(shí)間回復(fù)您~

對(duì)比框

產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機(jī)商鋪
010-62081908
在線留言