日韩av大片在线观看欧美成人不卡|午夜先锋看片|中国女人18毛片水多|免费xx高潮喷水|国产大片美女av|丰满老熟妇好大bbbbbbbbbbb|人妻上司四区|japanese人妻少妇乱中文|少妇做爰喷水高潮受不了|美女人妻被颜射的视频,亚洲国产精品久久艾草一,俄罗斯6一一11萝裸体自慰,午夜三级理论在线观看无码

產品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
美國布魯克海文儀器公司>資料下載>測量應用案例-20200702

資料下載

測量應用案例-20200702

閱讀:161          發(fā)布時間:2020-7-6
提 供 商 美國布魯克海文儀器公司 資料大小 3.1MB
資料圖片 下載次數(shù) 17次
資料類型 PDF 文件 瀏覽次數(shù) 161次
免費下載 點擊下載    
 文獻名: The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate

 

作者 Afshin Malekia, Farzaneh Moradia, Behzad Shahmoradia, Reza Rezaeea, Seung-Mok Leeb

a    Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

b    Department of Environmental Engineering, Catholic Kwandong University, Ganeung, 25601, South Korea

 

摘要:Diazinon is an important organophosphorus pesticide with extensive use, which is considered to be a major health hazard for humans due to its adverse effects on cholinesterase activity and central nervous system. The entry of diazinon into water resources affects a wide range of non-target organisms, which highlights the importance of its removal from water resources. The present study aimed to synthesize and use WO3 doped ZnO nanocatalyst to degrade diazinon. Zinc oxide nanoparticles were synthesized using the hydrothermal method and doped with 0.5%, 1%, and 2% M tungsten oxide. Moreover, the effects of dopant percentage, pH, the initial concentration of diazinon, nanoparticle dosage, and contact time were investigated. The results of EDS revealed that W was doped into ZnO structure. The maximum diazinon degradation (99%) was obtained using 10 mg/cm−2 2% WO3 doped ZnO, 10?mg/l diazinon, neutral pH value and contact time of 180?min. Removal efficiency was decreased by increasing pH and initial diazinon concentration. The experimental kinetic data followed the pseudo-first order model. The reaction rate constant (kobs) was decreased from 0.0205 to 0.0034 1/min with increasing initial diazinon concentration from 10 to 200?mg/L, respectively. The figures of merit based on electric energy consumption (EEO) indicate that less energy is consumed during the degradation of diazinon in the presence of 2% WO3 doped ZnO compared with other photocatalysts. Therefore, it could be concluded that 2%WO3 doped ZnO is a promising material for photocatalytic degradation of diazinon with high efficiency under optimal condition.

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功,!我們將在第一時間回復您~

對比框

產品對比 產品對比 聯(lián)系電話 二維碼 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言