日韩av大片在线观看欧美成人不卡|午夜先锋看片|中国女人18毛片水多|免费xx高潮喷水|国产大片美女av|丰满老熟妇好大bbbbbbbbbbb|人妻上司四区|japanese人妻少妇乱中文|少妇做爰喷水高潮受不了|美女人妻被颜射的视频,亚洲国产精品久久艾草一,俄罗斯6一一11萝裸体自慰,午夜三级理论在线观看无码

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊(cè)

當(dāng)前位置:
美國布魯克海文儀器公司>技術(shù)文章>Omni測(cè)量應(yīng)用案例-2016-6

技術(shù)文章

Omni測(cè)量應(yīng)用案例-2016-6

閱讀:299          發(fā)布時(shí)間:2016-4-19
 文獻(xiàn)名: Cationizable lipid micelles as vehicles for intraarterial glioma treatment
 
作者: Juliane Nguyen1, Johann R. N. Cooke2, Jason A. Ellis 3, Michael Deci1, Charles W. Emala2, Jeffrey N. Bruce3, Irving J. Bigio45, Robert M. Straubinger16, Shailendra Joshi2
1. Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
2. Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, P&S Box 46, New York, NY, 10032, USA
3. Department of Neurological Surgery, Columbia University, New York, NY, USA
4. Department of Electrical Engineering, Boston University, Boston, MA, USA
5. Department of Biomedical Engineering, Boston University, Boston, MA, USA
6. Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
 
摘要:The relative abundance of anionic lipids on the surface of endothelia and on glioma cells suggests a workable strategy for selective drug delivery by utilizing cationic nanoparticles. Furthermore, the extracellular pH of gliomas is relatively acidic suggesting that tumor selectivity could be further enhanced if nanoparticles can be designed to cationize in such an environment. With these motivating hypotheses the objective of this study was to determine whether nanoparticulate (20 nm) micelles could be designed to improve their deposition within gliomas in an animal model. To test this, we performed intra-arterial injection of micelles labeled with an optically quantifiable dye. We observed significantly greater deposition (end-tissue concentration) of cationizable micelles as compared to non-ionizable micelles in the ipsilateral hemisphere of normal brains. More importantly, we noted enhanced deposition of cationizable as compared to non-ionizable micelles in glioma tissue as judged by semiquantitative fluorescence analysis. Micelles were generally able to penetrate to the core of the gliomas tested. Thus we conclude that cationizable micelles may be constructed as vehicles for facilitating glioma-selective delivery of compounds after intraarterial injection.
 
關(guān)鍵詞:Blood–brain barrier Brain tumor Chemotherapy Glioma Nanoparticle
 

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功,!我們將在第一時(shí)間回復(fù)您~

對(duì)比框

產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 在線交流

掃一掃訪問手機(jī)商鋪
010-62081908
在線留言