日韩av大片在线观看欧美成人不卡|午夜先锋看片|中国女人18毛片水多|免费xx高潮喷水|国产大片美女av|丰满老熟妇好大bbbbbbbbbbb|人妻上司四区|japanese人妻少妇乱中文|少妇做爰喷水高潮受不了|美女人妻被颜射的视频,亚洲国产精品久久艾草一,俄罗斯6一一11萝裸体自慰,午夜三级理论在线观看无码

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊(cè)

當(dāng)前位置:
美國(guó)布魯克海文儀器公司>技術(shù)文章>NanoBrook產(chǎn)品應(yīng)用-9-90Plus

技術(shù)文章

NanoBrook產(chǎn)品應(yīng)用-9-90Plus

閱讀:334          發(fā)布時(shí)間:2015-3-12
 文獻(xiàn)名: Engineered protein nanoparticles for in vivo tumor detection
 
作者: Keum-Young Ahna, Ho Kyung Kob, c, Bo-Ram Leea, Eun Jung Leea, Jong-Hwan Leea, Youngro Byunc, Ick Chan Kwonb, Kwangmeyung Kimb , Jeewon Leea 
a Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul 136-713, Republic of Korea
b Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea
c Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Republic of Korea
 
摘要:Two different protein nanoparticles that are totally different in shape and surface structure, i.e. Escherichia coli DNA-binding protein (eDPS) (spherical, 10 nm) and Thermoplasma acidophilum proteasome (tPTS) (cylindrical, 12 × 15 nm) were engineered for in vivo optical tumor detection: arginine–glycine–aspartic acid (RGD) peptide (CDCRGDCFC) was genetically inserted to the surface of each protein nanoparticle, and also near-infrared fluorescence dye was chemically linked to the surface lysine residues. The specific affinity of RGD for integrin (αvβ3) facilitated the uptake of RGD-presenting protein nanoparticles by integrin-expressing tumor cells, and also the protein nanoparticles neither adversely affected cell viability nor induced cell damage. After intravenously injected to tumor-bearing mice, all the protein nanoparticles successfully reached tumor with negligible renal clearance, and then the surface RGD peptides caused more prolonged retention of protein nanoparticles in tumor and accordingly higher fluorescence intensity of tumor image. In particular, the fluorescence of tumor image was more intensive with tPTS than eDPS, which is due presumably to longer in vivo half-life and circulation of tPTS that originates from thermophilic and acidophilic bacterium. Although eDPS and tPTS were used as proof-of-concept in this study, it seems that other protein nanoparticles with different size, shape, and surface structure can be applied to effective in vivo tumor detection.
 
關(guān)鍵詞:Protein nanoparticles; Surface engineering; Tumor detection; Optical imaging
 

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

對(duì)比框

產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話(huà) 二維碼 意見(jiàn)反饋 在線(xiàn)交流

掃一掃訪問(wèn)手機(jī)商鋪
010-62081908
在線(xiàn)留言