目錄:北京佰司特科技有限責任公司>>分子生物學>>原子力顯微鏡>> HS-AFM超高速視頻級原子力顯微鏡
產(chǎn)地類別 | 進口 | 應用領域 | 化工,生物產(chǎn)業(yè),農(nóng)林牧漁 |
---|
超高速視頻級原子力顯微鏡--HS-AFM
原子力顯微鏡(Atomic Force Microscope,,AFM),一種可用來研究包括絕緣體在內(nèi)的固體材料表面結(jié)構的分析儀器,。它通過檢測待測樣品表面和一個微型力敏感元件之間的極微弱的原子間相互作用力來研究物質(zhì)的表面結(jié)構及性質(zhì),。將一對微弱力極敏感的微懸臂一端固定,另一端的微小針尖接近樣品,,這時它將與其相互作用,,作用力將使得微懸臂發(fā)生形變或運動狀態(tài)發(fā)生變化。掃描樣品時,,利用傳感器檢測這些變化,,就可獲得作用力分布信息,從而以納米級分辨率獲得表面形貌結(jié)構信息及表面粗糙度信息,。原子力顯微鏡可以測量材料物理性質(zhì),、力學性能、磁學性能,、熱學性能,、電學性能等方面的一些特征信息,但在掃描成像速度上一直存在局限性,,太慢的掃描速度導致原子力顯微鏡無法捕捉到分子間的相互作用過程和一些快速的分子動態(tài)變化,。
超高速視頻級原子力顯微鏡(High-Speed Atomic Force Microscope,HS-AFM)由日本 Kanazawa 大學 Prof. Ando 教授團隊研發(fā),,日本RIBM公司(生體分子計測研究所株式會社,,Research Institute of Biomolecule Metrology Co., Ltd)商業(yè)化的產(chǎn)品,可以達到視頻級成像的商業(yè)化原子力顯微鏡,。HS-AFM突破了傳統(tǒng)原子力顯微鏡“掃描成像速慢"的限制,,能夠在液體環(huán)境下超快速動態(tài)成像,分辨率為納米水平,。樣品無需特殊固定,,不影響生物分子的活性,,尤其適用于生物大分子互作動態(tài)觀測。超高速視頻級原子力顯微鏡--HS-AFM主要有兩種型號,,SS-NEX樣品掃描(Sample-Scanning HS-AFM)以及PS-NEX探針掃描(Probe-Scanning HS-AFM)。推出至今,,全球已有100多位用戶,,發(fā)表 SCI 文章 300 余篇,包括Science, Nature, Cell 等頂級雜志,。
相較于目前市場上的原子力顯微鏡成像設備,,超高速視頻級原子力顯微鏡--HS-AFM突破了 “掃描成像速慢"的限制,掃描速度高可達 20 frame/s,,并且有 4 種掃描臺可供選擇,。樣品無需特殊固定染色,不影響生物分子的活性,,尤其適用于生物大分子互作動態(tài)觀測,。液體環(huán)境下直接檢測,超快速動態(tài)成像,,分辨率為納米水平,。探針小,適用于生物樣品,;懸臂探針共振頻率高,,彈簧系數(shù)小,避免了對生物樣品等的損傷,。懸臂探針可自動漂移校準,,適用于長時間觀測。采用動態(tài)PID控制,,高速掃描時仍可獲得清晰的圖像,。XY軸分辨率2nm;Z軸分辨率0.5nm,。
HS-AFM不僅擁有超高掃描速率與原子級別分辨率,,而且具有操作的簡易性,使得對單分子動態(tài)過程的捕捉變得十分方便,,為科研工作者研所和理解生物物理,、生物化學、分子生物學,、病毒學以及生物醫(yī)學等領域的單分子動態(tài)過程提供了一款強大的工具,。
全新的HS-AFM采用了新的高頻微懸臂架構,更低噪音,、更高穩(wěn)定性的2控制器,,高速掃描器,緩沖防震設計,主動阻尼,,動態(tài)PID,,驅(qū)動算法優(yōu)化,多種前沿技術,,可以實現(xiàn)在超高速下獲取高分辨的生物樣品信息,。新系統(tǒng)整合了基于工作流程的操作軟件,直觀的用戶界面與流程化,、自動化的設置使得研究人員可以專注于實驗設計,,不需要復雜的操作和條件設置,快速獲取數(shù)據(jù),,加速研究的產(chǎn)出,。
日本RIBM公司的超高速視頻級原子力顯微鏡HS-AFM的創(chuàng)新點:
★ 高頻微懸臂
彈性系數(shù): 0.1 N/m
曲率半徑:<10 nm
共振頻率: 400-600kHz in liquid
★ 高速掃描臺
20 frames/s. (Standard scanner)
★ 緩沖防震+主動阻尼+動態(tài)PID+算法優(yōu)化
緩沖防震
主動阻尼
動態(tài)PID控制:可自動改變反饋增益,保證了HS-AFM在高速掃描條件下仍可獲得清晰的圖像
探針自動漂移校準,,適用于長時間樣品觀測
日本RIBM公司的超高速視頻級原子力顯微鏡HS-AFM的的應用領域:
從單分子到單細胞,,都可直接觀測
1、肌動蛋白
2,、CRISPR-Cas9
3,、膜聯(lián)蛋白
4、IgG
5,、活細胞
6,、細菌視紫紅質(zhì)
7、DNA納米結(jié)構
8,、仿生聚合物
日本RIBM公司的超高速視頻級原子力顯微鏡HS-AFM的視頻案例
1:IgG
在溶液中觀察到抗體(IgG),。
IgG呈"Y"形,兩個Fab區(qū)區(qū)分清晰,。
由于錨定能力較弱,,IgG保持其抗原結(jié)合能力。
2:Plasmid DNA
傳統(tǒng)AFM在沒有強錨定的情況下,,DNA分子圖像出現(xiàn)擺動,。
然而,強錨定可能會削弱真實的結(jié)構和行為,。
HS-AFM能清晰顯示質(zhì)粒的結(jié)構和運動,,無強錨定。
3:DNA內(nèi)切酶的消化:DNase I
DNA酶I是一種隨機消化DNA的核酸內(nèi)切酶,。視頻中的箭頭表示DNase I消化DNA的部分,。
請參考從DNA末端消化的核酸外切酶Bal31的視頻。
4:DNA外切酶消化:Bal31
Bal31是一種從DNA鏈末端消化DNA的核酸外切酶,。
視頻顯示Bal31的活性沿著DNA移動,,并逐漸從DNA鏈的末端消化,。
最后,DNA分子被消化,,但環(huán)狀DNA未被消化,。高光點是Bal31分子,它們與DNA的不同位置結(jié)合,。
5:DNA聚合酶的DNA延伸:Phi29
雙鏈DNA(黃色)隨著時間的推移而拉長,。單鏈λDNA作為模具固定在基板上。
由于從隨機六聚體引物(Red)結(jié)合到λDNA模體,,phi29聚合酶(Black)以dNTP為底物合成互補DNA。
6:鏈親和素2D晶體中的點缺陷
成功地觀察到點缺陷在晶體中的擴散,。
從圖像上看,,兩個單空位缺陷的軌跡跟蹤相對于晶格的兩個軸是明顯的各向異性的。
日本RIBM公司的超高速視頻級原子力顯微鏡HS-AFM的文獻列表
Title | Journal | ||||
Biophysical reviews top five: atomic force microscopy in biophysics | Biophysical Reviews | ||||
Reconstruction of Three-Dimensional Conformations of Bacterial ClpB from High-Speed Atomic-Force-Microscopy Images | Frontiers in Molecular Biosciences | ||||
A facile combinatorial approach to construct a ratiometric fluorescent sensor: application for the real-time sensing of cellular pH changes | Chemical Science | ||||
DNA Nanotechnology to Disclose Molecular Events at the Nanoscale and Mesoscale Levels | Springer Nature | ||||
Quantitative description of a contractile macromolecular machine | Science Advances | ||||
Dynamic Assembly/Disassembly of Staphylococcus aureus FtsZ Visualized by High-Speed Atomic Force Microscopy | International Journal of Molecular Sciences 2021, Vol. 22, Page 1697 | ||||
Localization atomic force microscopy | Nature 2021 594:7863 | ||||
Movements of mycoplasma mob gliding machinery detected by high-speed atomic force microscopy | mBio | ||||
An ultra-wide scanner for large-area high-speed atomic force microscopy with megapixel resolution | Scientific Reports 2021 11:1 | ||||
A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in vivo | Research Square | ||||
Influenza virus ribonucleoprotein complex formation occurs in the nucleolus | bioRxiv | ||||
Tardigrade Secretory-Abundant Heat-Soluble Protein Has a Flexible β-Barrel Structure in Solution and Keeps This Structure in Dehydration | Journal of Physical Chemistry B | ||||
Ultrastructure of influenza virus ribonucleoprotein complexes during viral RNA synthesis | Communications Biology on | ||||
A facile combinatorial approach to construct a ratiometric fluorescent sensor: application for the real-time sensing of cellular pH changes | Chemical Science | ||||
Deformation of microtubules regulates translocation dynamics of kinesin | Science Advances | ||||
Unraveling the host-selective toxic interaction of cassiicolin with lipid membranes and its cytotoxicity | bioRxiv | ||||
Nanostructure and thermoresponsiveness of poly( N -isopropyl methacrylamide)-based hydrogel microspheres prepared via aqueous free radical precipitation polymerization | RSC Advances | ||||
On-membrane dynamic interplay between anti-GM1 IgG antibodies and complement component C1q | International Journal of Molecular Sciences | ||||
Zwitterionic Polypeptides: Chemoenzymatic Synthesis and Loosening Function for Cellulose Crystals | Biomacromolecules |