曾經(jīng)有這樣一個傳言,,“中國的*長城是太空中能看到的地球上的人工建筑”,這讓我們中國人自豪無比,。但神舟載人飛船上天后,,包括楊利偉、劉洋在內(nèi)的眾多航天員都曾說過,,“沒有看到長城”,,這是為何呢?
長城
其實人眼的分辨率很有限,,只有0.3角分左右,,即便在二百公里左右的近地點軌道高度上,不考慮任何天氣因素,,人眼至多看清17米以上的目標,,因此對于寬度不過七八米的長城,確實有心無力了,。當(dāng)然了,,若是不考慮“看清”,而只是“看到”,,那么只要在夜間將長城照的燈火通明,,太空中的宇航員就有可能“看到”長城了。不過這就像遠遠看到商店的霓虹燈箱,,卻看不清楚燈箱的字一樣,不屬于我們此處討論的范疇。
200公里左右太空看長城效果示意圖
成像系統(tǒng)的分辨率之所以會受到限制,,除了光學(xué)元件存在像差之外,,更重要的原因是光波存在衍射效應(yīng),使得一個理想無限小的點物體發(fā)射的光波通過系統(tǒng)成像后,,由于成像系統(tǒng)口徑有限,,物體光的高頻成分被阻擋,終參與成像的只有物體光波的低頻成分(因此傳統(tǒng)成像系統(tǒng)本質(zhì)上相當(dāng)于一個低通濾波器),,使得終的像不再是一個無限小的理想點,,而成為了一個彌散的亮斑,稱為“艾里斑”,。
因此當(dāng)兩個點物體距離較近時,,它們通過成像系統(tǒng)后形成的兩個艾里斑就會重疊到一起無法分辨,兩個物點恰能分辨的距離就是極限分辨距離,,對應(yīng)的張角即為極限分辨角,,這就是的“瑞利判據(jù)”??茖W(xué)家發(fā)現(xiàn),,通常情況下該極限分辨率與光的波長(λ)、成像系統(tǒng)口徑(D)和數(shù)值孔徑(NA)等參數(shù)有關(guān),。
瑞利判據(jù)
為了獲得更好的成像效果,,科學(xué)家嘗試了許許多多的方法:在光刻系統(tǒng)中使用越來越短的光波(如目前因特爾等芯片企業(yè)已開始使用極紫外光),擴大成像系統(tǒng)口徑(如天文望遠鏡口徑已達到10米以上),,增加成像系統(tǒng)數(shù)值孔徑(如顯微成像系統(tǒng)使用浸油等方式獲得更大的NA)等,,但這些方法都未能擺脫理論極限的影響。
“衍射極限”仿佛是一片籠罩在頭頂?shù)年庼?,成為了看似堅不可摧的障礙,。為了能夠打破這個枷鎖和桎梏,實現(xiàn)超分辨成像,,科學(xué)家們真是腦洞大開,,展現(xiàn)出了無窮的智慧。
讓我們看看科學(xué)家們通過哪些方法打破桎梏:
結(jié)構(gòu)光照明顯微(SIM)
普通光學(xué)顯微鏡的成像過程可以通過點擴展函數(shù)進行描述,,通過對點擴展函數(shù)進行傅里葉變換,,可獲得顯微系統(tǒng)的光學(xué)傳遞函數(shù)。由于衍射極限的存在,,光學(xué)傳遞函數(shù)限制了通過顯微系統(tǒng)的信息量,,只允許低頻信息通過系統(tǒng),濾除代表細節(jié)的高頻信息,,即限制了系統(tǒng)的分辨率,。
結(jié)構(gòu)光照明顯微鏡實現(xiàn)超分辨的原理,就是利用特定結(jié)構(gòu)的照明光 在成像過程把位于光學(xué)傳遞函數(shù)范圍外的一部分信息轉(zhuǎn)移到范圍內(nèi),利用特定算法將范圍內(nèi)的高頻信息移動到原始位置,,從而擴展通過顯微系統(tǒng)的樣品頻域信息,,使得重構(gòu)圖像的分辨率超越衍射極限的限制。
對于光學(xué)顯微鏡系統(tǒng),,光學(xué)傳遞函數(shù)的三維結(jié)構(gòu)是圓環(huán)結(jié)構(gòu),,在零頻位置存在凹陷。凹陷帶來的后果就是CCD 上記錄的信息不僅包含物鏡焦平面上的樣品信息,,同時包含焦平面外的樣品信息,。由于受到焦平面外的信息的干擾,常規(guī)熒光顯微鏡無法獲得層析圖像,。三維結(jié)構(gòu)光照明顯微鏡提高分辨率,、獲得層析圖像的原理,就是利用特定結(jié)構(gòu)的照明光來獲得樣品的高頻信息,,采用特定算法在橫向和縱向上擴展樣品頻域信息的同時彌補凹陷帶來的影響,。
飽和結(jié)構(gòu)照明顯微鏡(SSIM)的原理
法國OXXIUS多波長合束激光器應(yīng)用在Nikon顯微鏡
受激發(fā)射損耗顯微(STED)
在STED顯微術(shù)中,有效熒光發(fā)光面積的減小是通過受激發(fā)射效應(yīng)來實現(xiàn)的,。一個典型的STED顯微系統(tǒng)中需要兩束照明光,,其中一束為激發(fā)光,另外一束為損耗光,。當(dāng)激發(fā)光的照射使得其衍射斑范圍內(nèi)的熒光分子被激發(fā),,其中的 電子躍遷到激發(fā)態(tài)后,損耗光使得部分處于激發(fā)光斑外圍的電子以受激發(fā)射的方式回到基態(tài),,其余位于激發(fā)光斑中心的被激發(fā)電子則不受損耗光的影響,,繼續(xù)以自發(fā)熒光的方式回到基態(tài)。
由于在受激發(fā)射過程中所發(fā)出的熒光和自發(fā)熒光的波長及傳播方向均不同,,因此真正被探測器所接受到的光子均是由位于激發(fā)光斑中心部分的熒光樣品通過自發(fā)熒光方式產(chǎn)生的,。由此,有效熒光的發(fā)光面積得以減小,,從而提高了系統(tǒng)的分辨率,。STED顯微術(shù)能實現(xiàn)超分辨的另一個關(guān)鍵在于受激發(fā)射與自發(fā)熒光相互競爭中的非線性效應(yīng)。
當(dāng)損耗光照射在激發(fā)光斑的邊緣位置使得該處樣品中的電子發(fā)生受激發(fā)射作用時,,部分電子不可避免地仍然會以自發(fā)熒光的方式回到基態(tài),。然而當(dāng)損耗光的強度超過某一閾值之后,受激發(fā)射過程將出現(xiàn)飽和,,此時以受激發(fā)射方式回到基態(tài)的電子將占絕大多數(shù),,而以自發(fā)熒光方式回到基態(tài)的電子則可以忽略不計。因此,,通過增大損耗光的強度,,使得激發(fā)光斑范圍內(nèi)更多范圍的自發(fā)熒光被抑制,,可以提高STED顯微術(shù)的分辨率。
受激發(fā)射損耗(STED)顯微的原理
法國OXXIUS公司多波長合束激光器
STORM和PALM超分辨顯微成像技術(shù)
STORM技術(shù)中,,使用Cy3和Cy5分子對作為熒光標記實現(xiàn)超分辨成像,,因為不同波長光可以控制Cy5在熒光激發(fā)態(tài)和暗態(tài)之間切換,例如紅色633nm激光可以激活Cy5發(fā)射熒光,,同時長時間照射可以將Cy5分子轉(zhuǎn)換成暗態(tài)不發(fā)光。之后用綠色的532nm激光照射Cy5分子時,,可以將其從暗態(tài)轉(zhuǎn)換成熒光態(tài),,而此過程的長短依賴于第二個熒光分子Cy3和Cy5之間的距離,因此,,當(dāng)Cy3和Cy5交聯(lián)成分子對時,,具備了特定的激發(fā)光轉(zhuǎn)換熒光分子發(fā)射波長的特性。
在顯微觀察前,,首先將待測觀察樣品用染劑染色,,將Cy3和Cy5分子對膠聯(lián)到特異的蛋白質(zhì)抗體上,就可以用抗體來標記細胞的內(nèi)源蛋白,,然后用波長為633nm的紅光長時間照射樣品使Cy5發(fā)射熒光后全部轉(zhuǎn)化為暗態(tài),,采用波長為532nm的綠光激發(fā)Cy3,從而使Cy5處于熒光態(tài),。激發(fā)過程中應(yīng)使532nm綠光強度足夠低,,以保證在衍射極限范圍內(nèi)至多只有一個Cy5熒光分子被激活至熒光態(tài)。而后,,用波長為633nm的紅色激光照射待觀察樣品,,使處于熒光態(tài)的Cy5分子發(fā)射熒光。通過電子相機讀取熒光圖像,,采用函數(shù)擬合的方法對圖像進行處理,,進而確定每個熒光點的中心位置。經(jīng)過足夠多次數(shù)循環(huán)后對獲得的熒光點位置進行疊加,,終得到超分辨顯微圖像,。
STORM技術(shù)中熒光開關(guān)原理圖
PALM技術(shù)中,使用GFP突變體作為光活化蛋白(PA-GFP)來標記靶蛋白,,并在細胞中表達,。用405nm激光器低能量照射細胞表面,一次僅激活出稀疏分布的幾個熒光分子,,然后用561nm激光激發(fā)得到熒光,,通過高斯擬合來定位這些熒光分子,在確定這些分子的位置后,,長時間使用561nm激光來漂白這些已經(jīng)定位正確的熒光分子后,,使他們不能夠被下一輪的激光再激活出來,。
再分別用405nm和561nm激光來激活、激發(fā)和漂白其他熒光分子,,多次成像后,,將這些分子的熒光圖像合成到一張圖上,得到了比傳統(tǒng)光學(xué)顯微鏡至少高10倍以上的分辨率,。PALM顯微鏡的分辨率僅僅受限于單分子成像的定位精度,,理論上來說可以達到1nm的數(shù)量級。PALM的成像方法只能用來觀察外源表達的蛋白質(zhì),,而對于分辨細胞內(nèi)源蛋白質(zhì)的定位無能為力,。
STROM與PALM的基本原理一致,區(qū)別在于STORM使用的熒光開關(guān)基團是有機熒光分子對,,而PALM使用的熒光開關(guān)基團是熒光蛋白分子,,由于STORM具有對細胞內(nèi)源性生物分子成像的優(yōu)勢,目前STORM在活細胞等生物體系的應(yīng)用更加廣泛,。在空間分辨率上,,STORM可以達到10-20nm,PALM可以達到20-30nm,;在時間分辨率上,,STORM可以達到1s,而PALM約為30s,。
STORM與常規(guī)顯微成像方法對細胞內(nèi)微管成像效果對比
什么是多波長合束激光器,?
合束激光器就是將多個波長光合束到一起輸出,它把合束/分束,、透鏡,、整形器件等全部集成并做了穩(wěn)固性的設(shè)計,各波長獨立控制,??梢宰尶蒲泄ぷ髡呋蚬こ處焸儗P挠谠囼灢糠侄皇亲鰪?fù)雜的光路調(diào)節(jié)
傳統(tǒng)合束光路
OXXIUS合束激光器內(nèi)部光路設(shè)計
OXXIUS合束激光器都有啥干貨?
多8波長輸出~緊湊合理的尺寸~高穩(wěn)定輸出功率~高光束質(zhì)量~高速調(diào)制功能~強大智能性….
L4Cc是一款緊湊型多波長合束激光器(通用型激光引擎),,它可將8個不同波長的激光耦合到一根單?;虮F饫w之中輸出,能同時或單獨對每一路激光進行控制,,單波長功率可達300mW,。此外OXXIUS可根據(jù)客戶不同的要求進行量身定制化的服務(wù)。同時我們具有遠程診斷修復(fù)和自我保護功能,,同時具有通過USB和RS232接口進行軟件控制,。激光器可進行高速模擬調(diào)制或TTL調(diào)制。
產(chǎn)品特點:
客戶可以自由選擇合束激光的數(shù)量(2個到 8個波長可選)
自由空間光輸出/各種光纖耦合輸出可選,;
單光路或多光路輸出
智能性強(遠程診斷修復(fù)和自我保護功能),;
軟件控制(通過USB和RS232接口)
高穩(wěn)定性,,光束質(zhì)量高,噪聲低,;
百MHZ的TTL調(diào)制功能和模擬調(diào)制,;
結(jié)構(gòu)緊湊,堅固耐用,;
可根據(jù)客戶的要求定制,,不收取定制費;
高性價比;
主要應(yīng)用:超分辨率成像,、共聚焦顯微鏡,、熒光激發(fā)、流式細胞儀,、SPIM、FRAP,、TIRF……
典型波長參數(shù):
波長 | 405nm | 488nm | 532nm/561nm | 638nm |
輸出功率 | 0-300mw | 0-200mw | 0-500mw | 0-500mw |
功率調(diào)節(jié)范圍 | 0-100% | 0-100% | 0-100% | 0-100% |
模擬調(diào)制 | 3MHZ | |||
TTL調(diào)制 | 150MHZ | |||
光束質(zhì)量(M^2) | <1.1 | |||
激光器尺寸 | 250mm*200mm*108mm | |||
工作電壓 | 220VAC |
OXXIUS合束激光器家族部分解決方案:
(單光路輸出) (雙光路輸出)
(8波長四光路輸出) (6波長可插拔光纖輸出)
OXXIUS公司其它激光器:
立即詢價
您提交后,專屬客服將第一時間為您服務(wù)