日韩av大片在线观看欧美成人不卡|午夜先锋看片|中国女人18毛片水多|免费xx高潮喷水|国产大片美女av|丰满老熟妇好大bbbbbbbbbbb|人妻上司四区|japanese人妻少妇乱中文|少妇做爰喷水高潮受不了|美女人妻被颜射的视频,亚洲国产精品久久艾草一,俄罗斯6一一11萝裸体自慰,午夜三级理论在线观看无码

產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學|元素分析|水分測定儀|樣品前處理|試驗機|培養(yǎng)箱


化工儀器網(wǎng)>技術中心>解決方案>正文

歡迎聯(lián)系我

有什么可以幫您,? 在線咨詢

高光譜技術在皮膚檢測中的實現(xiàn):構建高效系統(tǒng)與魯棒模型

來源:愛博能(廣州)科學技術有限公司   2025年06月24日 17:25  

Implementation of Hyperspectral Technology in Skin Detection: Building Efficient Systems and Robust Models

在上一篇文章中,,我們探討了高光譜成像技術在皮膚檢測中的潛力,,而本文將關注如何實現(xiàn)這一技術的實現(xiàn),。

In the previous article, we explored the potential of hyperspectral imaging technology in skin detection. This article will focus on its practical implementation.


高光譜技術在皮膚檢測中的實現(xiàn):構建高效系統(tǒng)與魯棒模型

皮膚樣品的可見光和近紅外光譜 / Visible and Near-Infrared Spectra of Skin Samples


為實現(xiàn)高光譜成像技術的有效應用,多個研究團隊搭建了各具特色的高光譜成像系統(tǒng),。其中一個西班牙團隊,,搭建了不同的系統(tǒng)。他們使用398.08~995.20nm的高光譜相機,,配備了電動底座和鹵素光源,,以優(yōu)化成像質(zhì)量,確保穩(wěn)定的數(shù)據(jù)采集,。

該團隊還搭建了,,采用900~1700nm的光譜范圍,搭建系統(tǒng)時特別關注患者的舒適度,,設計了支撐裝置,,讓患者在拍攝過程中能夠穩(wěn)定休息。此裝置由金屬梁和多個3D打印支撐平臺構成,,提供了柔軟且適應不同部位的支持,。

To effectively apply hyperspectral imaging, multiple research teams have developed specialized systems. One Spanish team, for instance, constructed distinct setups. They employed a hyperspectral camera covering 398.08–995.20 nm, equipped with a motorized stage and halogen lighting to optimize imaging quality and ensure stable data acquisition.

The team also developed another system operating in the 900–1700 nm range, prioritizing patient comfort by incorporating a support device that allowed subjects to remain stable during imaging. This setup consisted of metal beams and multiple 3D-printed support platforms, providing soft and adaptable positioning for different body areas.

高光譜技術在皮膚檢測中的實現(xiàn):構建高效系統(tǒng)與魯棒模型

可見光系統(tǒng) / the visible light system


高光譜技術在皮膚檢測中的實現(xiàn):構建高效系統(tǒng)與魯棒模型

近紅外系統(tǒng),。(a)本研究中為數(shù)據(jù)采集目的而構建的高光譜推掃平臺。(b)在采集過程中幫助患者感到舒適的不同支持平臺,。

the near-infrared system. (a) The hyperspectral push-broom platform constructed for data collection in this study. (b) Various support platforms designed to enhance patient comfort during acquisition.


在數(shù)據(jù)分析方法上,,近年來的研究主要集中在機器學習模型的應用。傳統(tǒng)的簡單圖像處理方法雖然實現(xiàn)直接,,但在應對復雜皮膚病變時,,其效果往往不能令人滿意。機器學習模型,,為皮膚檢測的準確性提供了支持,,這些模型具備良好的泛化能力,能夠在多種條件下有效識別不同類型的皮膚病變,。

Recent research has increasingly focused on machine learning models for data analysis. While traditional image processing methods are straightforward, their performance in detecting complex skin lesions is often unsatisfactory. Machine learning models, however, offer superior accuracy and generalization, enabling reliable identification of diverse skin lesions under varying conditions.

在一個研究中,,科研人員對不同的分類和分割方法進行了比較。這些方法各有優(yōu)缺點,,支持向量機在高維空間中表現(xiàn)良好,,隨機森林對過擬合有一定的魯棒性,K均值聚類適用于簡單的分類任務,,而主成分分析則有效進行降維,,保留數(shù)據(jù)中的重要特征。這具體取決于組織和目標病變的類型,。

In one study, researchers compared different classification and segmentation approaches, each with unique strengths:

·Support Vector Machines (SVM) excel in high-dimensional spaces.

·Random Forests demonstrate robustness against overfitting.

·K-means Clustering is suitable for simpler classification tasks.

·Principal Component Analysis (PCA) effectively reduces dimensionality while preserving critical features.

·The optimal method depends on tissue type and the target lesion.


高光譜技術在皮膚檢測中的實現(xiàn):構建高效系統(tǒng)與魯棒模型

各類方法的比較(部分)/ Comparison of different methodologies (partial)


前面提到的西班牙團隊,該團隊利用近紅外高光譜成像技術,,針對基底細胞癌(BCC)和皮膚鱗狀細胞癌(SCC)進行了檢測,,強調(diào)使用魯棒特征統(tǒng)計方法來進行數(shù)據(jù)分析。該方法不僅提高了系統(tǒng)的穩(wěn)定性,,還確保在樣本中存在噪聲和異常值時,,依舊能獲得較高的檢測準確性。

the aforementioned Spanish team utilized near-infrared hyperspectral imaging to detect basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), emphasizing robust statistical feature extraction. This approach not only improved system stability but also maintained high detection accuracy despite noise and outliers.


高光譜技術在皮膚檢測中的實現(xiàn):構建高效系統(tǒng)與魯棒模型

上圖:使用每個樣本在各個波長上的中位數(shù)值所得到的魯棒特征,。

下圖:使用平方根的雙權重中方差作為每個樣本變異度的測量方法,,得到這些樣本的魯棒偏差。

Top: Robust features derived from median values of each sample across wavelengths.

Bottom: Robust deviations calculated using the square root of the biweight midvariance (√BWMV) as a measure of variability.


此外,,他們在另一個實驗中重點關注BCC,、SCC和AK(光化性角化病)與健康皮膚的差異,,同樣采用了魯棒統(tǒng)計方法,,同時還使用多變量統(tǒng)計分析進行樣本間的比較,以發(fā)現(xiàn)數(shù)據(jù)中潛在的差異,。

In another experiment, the team examined differences among BCC, SCC, actinic keratosis (AK), and healthy skin, again applying robust statistics alongside multi-variate analysis to uncover subtle data variations.


高光譜技術在皮膚檢測中的實現(xiàn):構建高效系統(tǒng)與魯棒模型

在本研究中通過多種方法確定的最佳定義窗口,。虛線垂直線所劃定的區(qū)域標記了573.45nm至779.88nm之間最終感興趣的窗口,。

Optimal spectral window (573.45–779.88 nm, marked by dashed vertical lines) identified through multiple methods in this study.


高光譜技術在皮膚檢測中的實現(xiàn):構建高效系統(tǒng)與魯棒模型

每個樣本的高光譜特征。(a)魯棒特征標記了中央傾向以及5%和95%百分位置信區(qū)間(下線和上線分別),。(b)√BWMV計算表示魯棒樣本方差,。

Hyperspectral features of each sample. (a) Robust features indicating central tendency with 5% and 95% percentile confidence intervals (lower and upper bounds, respectively). (b) √BWMV representing robust sample variance.


綜上所述,高光譜成像技術在皮膚檢測中展現(xiàn)出了優(yōu)勢,,尤其是在系統(tǒng)構建與模型泛化能力方面,。通過選擇適宜的波長范圍,結(jié)合先進的數(shù)據(jù)分析技術,,我們的高光譜相機在皮膚疾病早期檢測中提供了堅實的基礎,。

值得一提的是,我們公司不僅銷售高光譜相機,,還能提供專業(yè)的硬件技術支持,,助力您的研究與應用提升效率。未來,,隨著高光譜成像技術與機器學習的深度融合,,該領域必將迎來更多機會,相信皮膚癌的早期檢測將變得更加高效和可靠,,為患者帶來更大的福音,。

Hyperspectral imaging demonstrates unique advantages in skin detection, particularly in system design and model generalization. By selecting optimal wavelength ranges and integrating advanced analytics, hyperspectral cameras provide a robust foundation for early skin disease diagnosis.

Notably, our company not only supplies hyperspectral cameras but also offers expert hardware support to enhance research and application efficiency. As hyperspectral imaging and machine learning continue to converge, this field holds immense promise—ushering in more efficient, reliable early detection of skin cancer and greater benefits for patients.


案例來源 / Source:

1. Courtenay LA, González-Aguilera D, Lagüela S, Del Pozo S, Ruiz-Mendez C, Barbero-García I, Román-Curto C, Ca?ueto J, Santos-Durán C, Carde?oso-álvarez ME, Roncero-Riesco M, Hernandez-Lopez D, Guerrero-Sevilla D, Rodríguez-Gonzalvez P. Hyperspectral imaging and robust statistics in non-melanoma skin cancer analysis. Biomed Opt Express. 2021 Jul 20;12(8):5107-27. doi: 10.1364/BOE.428143. PMID: 34513245; PMCID: PMC8407807.

2. Courtenay LA, Barbero-García I, Martínez-Lastras S, Del Pozo S, Corral de la Calle M, Garrido A, Guerrero-Sevilla D, Hernandez-Lopez D, González-Aguilera D. Near-infrared hyperspectral imaging and robust statistics for in vivo non-melanoma skin cancer and actinic keratosis characterisation. PLoS One. 2024 Apr 25;19(4):e0300400. doi: 10.1371/journal.pone.0300400. PMID: 38662718; PMCID: PMC11045066.

3. Aloupogianni E, Ishikawa M, Kobayashi N, Obi T. Hyperspectral and multispectral image processing for gross-level tumor detection in skin lesions: a systematic review. J Biomed Opt. 2022 Jun 8;27(6):060901. doi: 10.1117/1.JBO.27.6.060901.




免責聲明

  • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡有限公司-化工儀器網(wǎng)合法擁有版權或有權使用的作品,,未經(jīng)本網(wǎng)授權不得轉(zhuǎn)載,、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權使用作品的,,應在授權范圍內(nèi)使用,,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,,本網(wǎng)將追究其相關法律責任,。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,,并不代表本網(wǎng)贊同其觀點和對其真實性負責,,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體,、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,,必須保留本網(wǎng)注明的作品第一來源,并自負版權等法律責任,。
  • 如涉及作品內(nèi)容,、版權等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,,否則視為放棄相關權利,。
企業(yè)未開通此功能
詳詢客服 : 0571-87858618