日韩av大片在线观看欧美成人不卡|午夜先锋看片|中国女人18毛片水多|免费xx高潮喷水|国产大片美女av|丰满老熟妇好大bbbbbbbbbbb|人妻上司四区|japanese人妻少妇乱中文|少妇做爰喷水高潮受不了|美女人妻被颜射的视频,亚洲国产精品久久艾草一,俄罗斯6一一11萝裸体自慰,午夜三级理论在线观看无码

產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學|元素分析|水分測定儀|樣品前處理|試驗機|培養(yǎng)箱


化工儀器網(wǎng)>技術(shù)中心>選購指南>正文

歡迎聯(lián)系我

有什么可以幫您,? 在線咨詢

靶標解讀IFN-γ

來源:北京索萊寶科技有限公司   2025年05月19日 13:53  

1,、簡介

干擾素(IFN)多效性細胞因子家族,,根據(jù)受體特異性可分為三型:I型(含IFN-α/β等13個亞型,,通過IFNAR1/IFNAR2受體傳遞信號),、II型(僅包含IFN-γ,,特異性結(jié)合IFNGR1/IFNGR2受體)及III型(IFN-λ,,依賴IL-10R2/IFNLR1受體發(fā)揮作用)[1-2]。IFN-γ是Ⅱ型干擾素的成員,,其基因定位于人類染色體12q15區(qū)域,,包含4個外顯子,其編碼基因在脊椎動物中呈現(xiàn)高度保守性(人鼠氨基酸序列同源性約70%),。編碼的成熟蛋白由143個氨基酸通過鏈間二硫鍵形成功能性同源二聚體,,其受體結(jié)合域中保守的α螺旋結(jié)構(gòu)對生物活性至關(guān)重要[3]

IFN-γ主要由T淋巴細胞,、自然殺傷細胞(NK)和抗原提呈細胞(APCs,,包括單核細胞,、巨噬細胞和樹突狀細胞)分泌[4-6]。其表達受先天免疫信號的嚴格調(diào)控,,APCs通過分泌IL-12/IL-18激活STAT4/NF-κB通路,,一方面趨化NK細胞向炎癥部位遷移,另一方面直接誘導IFN-γ基因轉(zhuǎn)錄,,形成連接病原識別與適應性免疫啟動的關(guān)鍵調(diào)控軸[7-9],。

作為免疫微環(huán)境的核心調(diào)控者,IFN-γ在感染部位呈現(xiàn)爆發(fā)式表達特征,,其通過激活巨噬細胞殺菌功能,、上調(diào)MHC分子表達及驅(qū)動Th1分化等機制增強宿主防御[10]。同時,,該因子在腫瘤免疫中發(fā)揮雙重作用:既可誘導腫瘤細胞免疫原性死亡,,又能促進免疫檢查點分子(如PD-L1)表達形成負反饋調(diào)控[11]。這種功能復雜性與其特殊的信號級聯(lián)機制直接相關(guān),,IFN-γ通過結(jié)合異源二聚體受體(IFNGR1/IFNGR2),,觸發(fā)JAK1/JAK2-STAT1磷酸化級聯(lián)反應,磷酸化STAT1入核后協(xié)同IRF家族蛋白,,通過結(jié)合干擾素刺激反應元件(ISRE)啟動數(shù)百種干擾素刺激基因(ISGs)轉(zhuǎn)錄,,形成級聯(lián)放大效應。

 

2,、功能或作用機制


1)受體激活與激酶級聯(lián)

IFN-γ以同源二聚體形式結(jié)合異源二聚體受體IFNGR,,誘導受體構(gòu)象變化。此過程激活受體偶聯(lián)的JAK1(結(jié)合IFNGR2)和JAK2(結(jié)合IFNGR1)酪氨酸激酶,,觸發(fā)二者相互磷酸化,。活化的JAK1進一步磷酸化IFNGR1鏈第440位酪氨酸殘基(Y440),,形成兩個相鄰的STAT1蛋白SH2結(jié)構(gòu)域結(jié)合位點[12-14],。

2)STAT1磷酸化與復合物組裝

募集至受體的STAT1分子在其C端Y701位點被JAK激酶磷酸化,激活誘導STAT1同源二聚化并從受體解離,,同源二聚體進一步激活激活I(lǐng)RF-1(Interferon Regulatory Factor-1,,干擾素調(diào)節(jié)因子-1)及IFN-γ激活序列(GAS),以啟動后續(xù)的基因轉(zhuǎn)錄調(diào)控,,而少部分受體解離的STAT1會與STAT2及IRF-9形成異源復合物[15-17],。其中,STAT1:STAT1:IRF-9復合物調(diào)控經(jīng)典GAS(IFN-γ-激活序列)響應基因,;STAT1:STAT2:IRF-9(ISGF3復合物):靶向ISRE(干擾素刺激反應元件)

3)核轉(zhuǎn)位與基因轉(zhuǎn)錄調(diào)控

磷酸化Stat1同源二聚體與ISGF3復合物轉(zhuǎn)位入核,,分別結(jié)合靶基因啟動子區(qū)的GAS和ISRE元件[18]。IRF-1作為次級轉(zhuǎn)錄因子,,進一步擴大調(diào)控網(wǎng)絡(luò),。此過程激活包括ICAM-1(細胞間黏附分子),、iNOS(誘導型一氧化氮合酶)及IRF家族成員在內(nèi)的多種干擾素調(diào)控基因,形成多層級轉(zhuǎn)錄放大效應,。

 

3、臨床應用

1)抗感染

IFN-γ作為一種重要的免疫調(diào)節(jié)因子,,在抗感染過程中發(fā)揮著關(guān)鍵作用,。它通過激活巨噬細胞,增強其吞噬和殺傷能力,,促進抗原提呈,,從而提高機體對病原體的清除效率[20]。此外,,IFN-γ還能誘導產(chǎn)生抗菌肽和其他具有直接殺菌作用的分子,,進一步加強宿主防御功能。

2)抗腫瘤

IFN-γ在腫瘤免疫監(jiān)視中占據(jù)核心地位,,能夠直接抑制腫瘤細胞增殖,,并通過多種途徑增強機體的抗腫瘤免疫反應。IFN-γ可以上調(diào)MHC I類分子表達,,使腫瘤細胞更容易被識別,;刺激NK細胞、T細胞等效應細胞的活性,;誘導免疫檢查點分子如PD-L1的表達,,進而調(diào)節(jié)腫瘤微環(huán)境中的免疫平衡[11,21-22]

3)自身免疫性疾病

過度活躍的IFN-γ信號可能導致自身免疫性疾病的發(fā)生和發(fā)展,,如系統(tǒng)性紅斑狼瘡(SLE),、多發(fā)性硬化癥(MS)等[23-24]。針對IFN-γ信號通路的關(guān)鍵節(jié)點進行干預,,如使用單克隆抗體阻斷IFN-γ與其受體結(jié)合,,或設(shè)計小分子化合物抑制下游信號傳導,可有效控制病情進展,,減少并發(fā)癥,。

4)移植排斥反應

 術(shù)后,供體與受體之間的HLA(Human Leukocyte Antigen,,人類白細胞抗原)差異是引發(fā)急性排斥反應的主要原因,。IFN-γ在此過程中扮演重要角色,它能增強移植物特異性T細胞的活化,,加劇局部炎癥反應,,最終導致移植物功能喪失。IFN-γ抑制藥物可下調(diào)移植排斥介導的免疫應答,。此外,,IL-10等具有抗炎效果的細胞因子,,可以作為潛在的治療策略,減輕IFN-γ帶來的不利影響[25],。

5)神經(jīng)退行性疾病

IFN-γ在神經(jīng)退行性疾病如阿爾茨海默?。ˋD)、帕金森?。≒D)中顯示出復雜的雙重作用,。一方面,適度的IFN-γ水平有助于清除β-淀粉樣蛋白沉積物,,減緩疾病進程,;另一方面,過量的IFN-γ可能會加重神經(jīng)炎癥,,損害神經(jīng)元結(jié)構(gòu)與功能[26],。針對IFN-γ在神經(jīng)退行性疾病中的復雜角色,未來的研究需要更加細致地解析其調(diào)控網(wǎng)絡(luò),,以期找到既能利用其有益效應又能避免不良后果的治療方案,。

相關(guān)產(chǎn)品

 

參考文獻

[1] Bazan, J. F. (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA 87, 6934– 6938.

[2] Thoreau, E., Petridou, B., Kelly, P. A., Djiane, J., Mornon, J. P. (1991) Structural symmetry of the extracellular domain of the cytokine/growth hormone/prolactin receptor family and interferon receptors revealed by hydrophobic cluster analysis. FEBS Lett. 282, 26–31.

[3] Adolf, G. R. (1985) Structure and effects of interferon-gamma. Oncology 42, 1–10.

[4] Carnaud, C., Lee, D., Donnars, O., Park, S. H., Beavis, A., Koezuka, Y., Bendelac, A. (1999) Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650.

[5] Frucht, D. M., Fukao, T., Bogdan, C., Schindler, H., O’Shea, J. J., Koyasu, S. (2001) IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol. 22, 556–560.

[6] Gessani, S., Belardelli, F. (1998) IFN-gamma expression in macrophages and its possible biological significance. Cytokine Growth  Factor Rev. 9,117–123.

[7] Munder, M., Mallo, M., Eichmann, K., Modolell, M. (1998) Murine

macrophages secrete interferon gamma upon combined stimulation with

interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage

activation. J. Exp. Med. 187, 2103–2108.

[8] Fukao, T., Matsuda, S., Koyasu, S. (2000) Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN-gamma production by dendritic cells.

J. Immunol. 164, 64–71.

[9] Schindler, H., Lutz, M. B., Rollinghoff, M., Bogdan, C. (2001) The

production of IFN-gamma by IL-12/IL-18-activated macrophages requires STAT4 signaling and is inhibited by IL-4. J. Immunol. 166,

3075–3082.

[10] Bach, E. A., Szabo, S. J., Dighe, A. S., Ashkenazi, A., Aguet, M., Murphy,K. M., Schreiber, R. D. (1995) Ligand-induced autoregulation of IFNgamma receptor beta chain expression in T helper cell subsets. Science 270, 1215–1218.

[11] Kaplan, D. H., Shankaran, V., Dighe, A. S., Stockert, E., Aguet, M., Old, L. J., Schreiber, R. D. (1998) Demonstration of an interferon gamma dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. USA 95, 7556–7561.

[12] Greenlund, A.C., Farrar, M.A., Viviano, B.L., Schreiber, R. D. (1994) Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J. 13, 1591–1600.

[13] Briscoe, J., Rogers, N. C., Witthuhn, B. A., Watling, D., Harpur, A.G., Wilks, A.F., Stark, G.R. , Ihle , J.N. ,Kerr,I.M. (1996) Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state. EMBO J. 15, 799–809.

[14] Igarashi, K., Garotta, G., Ozmen, L., Ziemiecki, A., Wilks, A. F., Harpur, A. G., Larner, A. C., Finbloom, D. S. (1994) Interferon-gamma induces tyrosine phosphorylation of interferon-gamma receptor and regulated association of protein tyrosine kinases, Jak1 and Jak2, with its receptor. J. Biol. Chem. 269, 14333–14336.

[15] Darnell Jr., J. E., Kerr, I. M., Stark, G. R. (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421.

[16] Schindler, C., Darnell Jr., J. E. (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64,

621–651.

[17] Ramana, C.V., Chatterjee-Kishore, M., Nguyen, H., Stark, G. R. (2000) Complex roles of Stat1 in regulating gene expression. Oncogene 19, 2619–2627

[18] Paludan, S.R. (1998)Interleukin-4 and interferon-gamma: the quintessence of a mutual antagonistic relationship. Scand. J. Immunol. 48,459–468.

[19] Schroder, K., Hertzog, P. J., Ravasi, T., and Hume, D. A. (2003) Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189. doi:10.1189/jlb.0603252

[20] Davies, E. G., Isaacs, D., Levinsky, R. J. (1982) Defective immune interferon production and natural killer activity associated with poor neutrophil mobility and delayed umbilical cord separation. Clin. Exp. Immunol. 50, 454–460.

[21] Dighe, A. S., Richards, E., Old, L. J., Schreiber, R. D. (1994) Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1, 447–456.

[22] Tannenbaum, C. S., Hamilton, T. A. (2000) Immune-inflammatory mechanisms in IFNgamma-mediated anti-tumor activity. Semin. Cancer Biol. 10, 113–123.

[23] Lee, J. Y., Goldman, D., Piliero, L. M., Petri, M., Sullivan, K. E. (2001)Interferon-gamma polymorphisms in systemic lupus erythematosus. Genes Immun. 2, 254–257.

[24] Baechler, E. C., Batliwalla, F. M., Karypis, G., Gaffney, P. M., Ortmann, W. A., Espe, K. J., Shark, K. B., Grande, W. J., Hughes, K. M., Kapur, V., Gregersen, P. K., Behrens, T. W. (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100, 2610–2615.

[25] Soyoz, M., Pehlivan, M., Tatar, E., Cerci, B., Coven, H. I. K., and Ayna, T. K. (2021) Consideration of IL-2, IFN-γ and IL-4 expression and methylation levels in CD4+ T cells as a predictor of rejection in kidney transplant. Transpl. Immunol. 68, 101414. doi:10.1016/j.trim.2021.101414

[26] Baik, S. H., Kang, S., Lee, W., Choi, H., Chung, S., Kim, J.-I., and Mook-Jung, I. (2019) A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease. Cell Metab. 30(3), 493–507. doi:10.1016/j.cmet.2019.06.005

 

 



免責聲明

  • 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載,、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,,應在授權(quán)范圍內(nèi)使用,,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,,本網(wǎng)將追究其相關(guān)法律責任,。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,,并不代表本網(wǎng)贊同其觀點和對其真實性負責,,不承擔此類作品侵權(quán)行為的直接責任及連帶責任。其他媒體,、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,,必須保留本網(wǎng)注明的作品第一來源,并自負版權(quán)等法律責任,。
  • 如涉及作品內(nèi)容,、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,,否則視為放棄相關(guān)權(quán)利,。
企業(yè)未開通此功能
詳詢客服 : 0571-87858618