在上個專題中我們講述了光色測量原理,這次我們再來簡單回顧一下顯示技術的發(fā)展歷史和趨勢,。
顯示技術是用于創(chuàng)建和呈現(xiàn)可視化信息的各種方法和系統(tǒng)的總稱,。隨著科學研究和技術發(fā)明的不斷進步,人們掌握了多種信息再現(xiàn)的方法,,也發(fā)開發(fā)了各種各樣的信息再現(xiàn)技術和相應的器件,。例如,陰極射線管(CRT:Cathode Ray Tube),、液晶顯示技術(LCD:liquid-crystal display),、有機發(fā)光二極管顯示技術(OLED:Organic light-emitting diode display)、發(fā)光二極管顯示技術(LED:light emitting diode),、等離子顯示技術(PDP:Plasma Display)微型發(fā)光二極管技術(Micro-LED)等,。
每一種顯示技術的誕生都是人類聰明才智的結晶,是物理,、化學和大規(guī)模制造技術的綜合產(chǎn)物,。
1. 陰極射線管顯示技術(CRT:Cathode Ray Tube)
CRT是第一種顯示技術,,它是一個特制的真空管,其中包括電子槍,,通過電子槍發(fā)射出來的電子束轟擊屏幕上的熒光粉,,從而顯示圖像。它的發(fā)明到成熟和大規(guī)模使用經(jīng)歷了100年,。盡管它能耗高,、體積大、笨重,,但是它的運行時間卻貫穿了整個20世紀,。CRT最初用于實驗室的示波器和雷達顯示器,后來這種顯示技術逐漸普及,,以家用電視機,、攝像機等形式出現(xiàn)。它可是電視系統(tǒng)的發(fā)展的基礎,,現(xiàn)已逐漸被淘汰,。下面是CRT的發(fā)展歷史簡要:
1855年,德國人Heinrich Geissler發(fā)明了蓋斯勒管,,該管用汞泵制成,,是第一個良好的真空(空氣)管,后來由Sir William Crookes進行了改進,。
1859年,,德國數(shù)學家和物理學家Julius Plucker用不可見的陰極射線進行實驗。
1878年,,英國人Sir William Crookes爵士確認了陰極射線的存在,,他發(fā)明了克魯克斯管,這也是所有陰極射線管的粗略原型,。
1897年,,德國人Karl Ferdinand Braun發(fā)明了一種陰極射線管掃描裝置——博朗管(Braun Tube),即一種帶有熒光屏的CRT示波器,,它是當今電視和雷達管的先驅(qū),。
1907年,俄羅斯科學家Boris Rosing在電視系統(tǒng)的接收器中使用了CRT,。Rosing將粗糙的幾何圖案傳輸?shù)诫娨暺聊簧?,并且是第一個這樣使用CRT的發(fā)明者。
1922年,,誕生了真正的第一臺顯示器,,由Apple I使用CRT組成,是單色陰極射線管,。
1929年,,Vladimir Kosma Zworykin發(fā)明了一種稱為顯像管的陰極射線管,用于原始的電視系統(tǒng),。
1931年,,Allen B. Du Mont制造了第一款商用且耐用的CRT電視機。
1936年,,第11屆柏林奧*會首*實現(xiàn)電視實況轉(zhuǎn)播,,促進了CRT電視的普及。
1973年,,第一臺配備顯示器的奧托電腦發(fā)布,。
1954年,彩色陰極射線管用于彩色電視機的顯示
圖1 陰極射線管橫截面圖(不按比例縮放)及其聚焦和偏轉(zhuǎn)電子束(綠色)
CRT的工作原理是電加熱鎢線圈,,而鎢線圈又加熱CRT后部的陰極,,使其發(fā)射出電子,這些電子被電極調(diào)制和聚焦,。電子由偏轉(zhuǎn)線圈或板引導,,陽極將它們加速到熒光粉涂層的屏幕,當被電子撞擊時,,熒光粉屏幕會產(chǎn)生光,。
表1 單色CRT的結構
單色CRT的結構 | 1. 偏轉(zhuǎn)線圈 2. 電子束和電子槍 3. 聚焦線圈 4. 屏幕內(nèi)側的熒光粉層,當被電子束擊中時發(fā)光 5. 用于加熱陰極的燈絲 6. 管子內(nèi)側的石墨層 7. 陽極電壓線進入管子的橡膠或硅膠墊圈(陽極杯) 8. 陰極 9. 管子的氣密玻璃體 10. 屏幕 11. 軛中的線圈 12. 控制電極調(diào)節(jié)電子束的強度,,從而調(diào)節(jié)熒光粉發(fā)出的光 13. 用于陰極,、燈絲和控制電極的接觸引腳 14. 陽*高壓用線材 |
彩色CRT的結構 | 1. 三個電子發(fā)射器(用于紅色、綠色和藍色熒光粉點) 2. 電子束和電子槍 3. 聚焦線圈 4. 偏轉(zhuǎn)線圈 5. 最終陽極的連接(在一些接收管手冊中稱為“ultor” 6. 用于分離所顯示圖像的紅色,、綠色和藍色部分的光束的掩模 7. 具有紅色,、綠色和藍色區(qū)域的熒光粉層(屏幕) 8. 屏幕熒光粉涂層內(nèi)側的特寫鏡頭 |
2. 等離子顯示技術(PDP:Plasma Display Panel)
PDP是一種利用氣體放電的顯示裝置,這種屏幕采用了等離子管作為發(fā)光元件,。它的黑色深,,對比度高,響應快,,視角大,,普通光照環(huán)境下可視性好,輕薄,,這使得它和CRT顯示屏相比具有更高的技術優(yōu)勢,。
雖然等離子顯示技術依然牢牢占據(jù)畫面表現(xiàn)的巔*,但是和成本更低的液晶顯示屏以及更輕薄的OLED顯示屏相比,,它也難以逃脫被淘汰的命運,。直到2007年左右,等離子顯示屏通常用于大型電視,。到2013年,,由于來自低成本液晶顯示屏(LCD)的競爭,,PDP和CRT一樣幾乎失去了所有市*份額。面向美國零售市場的等離子顯示器制造已于2014年結束,,面向中國市場的制造已于2016年結束,。
它的顯示原理為:
(1) 等離子顯示屏由兩片玻璃組成,在兩片玻璃之間有數(shù)百萬個小隔間,。這些隔室或“燈泡”或“細胞”填充惰性氣體和微量其他氣體(例如,,汞蒸氣)的混合物;
(2) 當在隔室上施加高壓時,,隔室中的氣體會形成等離子體,。隨著電流(電子)的流動,當電子穿過等離子體時,,一些電子撞擊汞原子,,使得原子的激發(fā)到高能級,直到處于激發(fā)態(tài)的原子發(fā)生能級躍遷,,并以紫外線的形式釋放光子,;
(3) 然后,紫外光子撞擊涂在隔室內(nèi)部的熒光粉,。當紫外光子撞擊熒光粉分子時,,它會暫時提高熒光粉分子中外軌道電子的能級,使電子從穩(wěn)定狀態(tài)變?yōu)椴环€(wěn)定狀態(tài),;然后,,電子會以低于紫外光的能級以光子的形式釋放多余的能量;
(4) 低能量光子大多在紅外范圍內(nèi),,但大約40%在可見光范圍內(nèi),。因此,輸入能量主要轉(zhuǎn)換為紅外光,,但也轉(zhuǎn)換為可見光,。
(5) 屏幕在運行期間會被加熱至30℃至41℃。根據(jù)所使用的熒光粉,,可以獲得不同顏色的可見光,。
(6) 等離子顯示屏中的每個像素都由三個單元組成,這些單元構成了可見光的原色,。改變施加在單元上的信號電壓可以就可以產(chǎn)生不同的顏色,。
1936年,匈牙利工程師 Kálmán Tihanyi 在他的一篇論文中描述了一種平板等離子顯示系統(tǒng),。
1964年,,第一個實用的等離子視頻顯示屏于由Donald Bitzer、H. Gene Slottow 和研究生Robert Willson在伊利諾伊大學厄巴納-香檳分校共同發(fā)明,用于PLATO計算機系統(tǒng),。
70~80年代,,單色(橙色)的PDP顯示屏在收銀機、計算器,、彈球機,、飛機航空電子設備(如收音機、導航儀器),、頻率計數(shù)器和測試設備領域有了廣泛的應用。
1992年,,富士通推出了世*上第一臺21英寸全彩顯示屏,。
進入2000年后,等離子顯示屏在大尺寸電視機領域獲得了長足的進展和應用,。
盡管PDP曾經(jīng)短暫的占據(jù)了一部分電視機市場,,然而很快便退出了歷史舞臺。
3. 電致發(fā)光顯示技術(EL:Electro-Luminescent Display)
電致發(fā)光(EL)是一種光學和電學現(xiàn)象,,其中材料響應通過它的電流或強電場而發(fā)光,。
EL的工作原理是通過使電流穿過原子使原子處于激發(fā)態(tài),激發(fā)態(tài)的原子躍遷回低能態(tài)時,,就會發(fā)射光子,。通過改變被激發(fā)的材料,就可以改變發(fā)出的光的顏色,。實際的ELD是使用彼此平行的扁平,、不透明電極條構成的,上面覆蓋著一層電致發(fā)光材料,,然后是另一層垂直于底層的電極,。此頂層必須是透明的,以便讓光線逸出,。在每個交點處,,材質(zhì)亮起,從而創(chuàng)建一個像素,。
電致發(fā)光顯示屏是在兩層導體之間夾入一層電致發(fā)光材料(如砷化鎵)而制成,。當電流流動時,材料層發(fā)出可見光,。術語“電致發(fā)光顯示器”是指既不使用LED也不使用OLED設備,,而是使用傳統(tǒng)電致發(fā)光材料的顯示器。
1907年,,英國無線電研究員Henry Joseph Round發(fā)現(xiàn)了電致發(fā)光,,這是一種不產(chǎn)生熱量的光。它的缺點是尺寸和安全性有限,破裂的EL燈因為存在高壓電路而危及人身安全,。電致發(fā)光顯示屏一直是一種小眾技術,,現(xiàn)在很少使用。
4. 液晶顯示技術(LCD:Liquid Crystal Display)
LCD顯示技術是利用液晶分子的光學特性控制光的透過,,進而產(chǎn)生圖像的技術,,它需要背光源。廣泛應用于電腦顯示器,、電視,、手機等設備。
LCD顯示屏通常由背光,、液晶盒組成,。液晶盒可以認為是一個光閥開關,光閥打開時,,背光透過,;光閥關閉時,背光關斷,。液晶盒由夾在兩片鍍有ITO像素(子像素)的薄玻璃組成,,在兩片玻璃的外側會貼有偏光片;玻璃之間有液晶夾層,,在玻璃內(nèi)側還會有彩色濾光片,、配向膜;當前后玻璃的ITO像素施加電場時,,就會改變液晶分子的排列,,進而改變其旋光特性。改變電壓的大小,,就可以改變像素/子像素的透光量,,透過的光再經(jīng)過彩色濾光片的濾光,就能顯示R,、G,、B三種顏色,進而混合出想要的顏色,。
早在1888年,,奧地利植物生理學家Friedrich Reinitzer就研究了膽*醇的各種衍生物的特殊性質(zhì),并發(fā)現(xiàn)了它們的兩個熔點,。德國物理學家Otto Lehman繼續(xù)對這些“流動”晶體進行研究,,并最終創(chuàng)造了“膽*醇液晶”一詞。此后,,科學家們對這些材料并不真正感興趣,,這些材料長期以來一直是一種好奇心,。
1960年代,美國制造了第一個液晶顯示器,,液晶的研究才又開始繁榮,。
1966年,膽甾型液晶被用作熱成像和醫(yī)學中的溫度指示器,。
1968年,,美國無線電公司(RCA)的George Heilmeier展示了一款工作在80℃的液晶顯示器,平板電視誕生了,,它可以像一幅畫一樣掛在墻上,。
1968年:開始對向列液晶的研究?!跋蛄小贝矸肿幼孕信帕谐傻摹鞍魻睢毙螤?。
20世紀70年代液晶化學家最重要的問題是:如何降低工作溫度?達姆施塔特的研究人員成功混合液晶,,在室溫下獲得向列相。與第一代液晶顯示器相比,,這是一個巨大的進步,。
1970年:第一臺配備氧化偶氮化合物和集成黃光濾光片的LCD袖珍計算器在阿赫瑪(ACHEMA)世界論壇和流程工業(yè)領*展會上亮相。
1971年:當時在美國俄亥俄州肯特州立大學的James Fergason以及瑞士的Martin Schadt和Wolfgang Helfrich幾乎同時開發(fā)出“扭曲向列電池”(TN電池)——這是一項巨大的突破,,導致該領域付出了更大的努力向列液晶,。
1968年美國RCA公司.Wi1liams發(fā)現(xiàn)向列相液晶在電場作用下形成條紋疇,并有光散射現(xiàn)象G.H. Heilmeir 隨即將其發(fā)展成動態(tài)散射顯示模式,,并制成世*上第一個液晶顯示器(LCD),。1968年美國Heilmeir等人還提出了賓主效應(GH)式。1969年Xerox公司提出Ch-N相變存儲模式,。1971年M.F.Schiekel提出電控雙折射(ECB)模式,,T.L.Fergason 等提出扭曲向列相(TwistedNematic:TN)模式,1980年N.Clark等提出鐵電液晶模式(FLC),,1983~1985年T.Scheffer等人先后提出超扭曲向列相(Super TwisredNematic:STN)模式,。1986年Nagata提出用雙層盒(DSTN)實現(xiàn)黑白顯示技術;之后又有用拉伸高分子膜實現(xiàn)黑白顯示的技術(FSTN)
1996年以后,又提出采用單個偏光片的反射式TN(RTN)及反射式STN(RSTN)模式,。
在2007年左右,,液晶電視擊敗了PDP,成為消費者(或者,,可以說是生產(chǎn)商)的選擇,,因為它們的尺寸大,成本低,。LED技術不斷進步,,LED背光LCD顯示屏贏得市場,。OLED技術也在不斷改進,并準備以更好的黑色(甚至比等離子更好)和更薄的硬性更弱的外形挑戰(zhàn)LCD,,但是LCD繼續(xù)提供更低的制造成本,、更長的使用壽命和更高的耐用性。
5. 有機發(fā)光二極管顯示技術(OLED:Organic Light Emitting Diode)
OLED是自發(fā)光顯示技術,,由一層有機化合物圖層和上下電極構成,,通電后有機物被電流激發(fā)出彩色光并形成圖像。OLED器件結構:
(1) 基板(透明塑料,、玻璃,、金屬箔):基層用來支撐整個OLED。
(2) 陽極:陽極在電流流過設備時產(chǎn)生“空穴”,。
(3) 空穴傳輸層:該層由有機材料分子構成,,這些分子傳輸由陽極而來的“空穴”。
(4) 發(fā)光層:該層由有機材料分子(不同于導電層)構成,,發(fā)光過程在這一層進行,。
(5) 電子傳輸層:該層由有機材料分子構成,這些分子傳輸由陰極而來的“電子”,。
(6) 陰極:當設備內(nèi)有電流流通時,,陰極會將電子注入電路。
從結構上看,,OLED顯示器件的結構簡單,,但其制造工藝難度卻也相當大,這也是其自從發(fā)現(xiàn)到規(guī)?;虡I(yè)應用間隔時間比較久的原因,。
OLED的研究產(chǎn)生其實起源于一個偶然的發(fā)現(xiàn)。1979年的一天晚上,,在美國柯達公司從事科研工作的華裔科學家鄧青云博士(Dr.C.W.Tang)在回家的路上忽然想起有東西忘記在實驗室里,,回去以后,他發(fā)現(xiàn)黑暗中有個亮的東西,。打開燈發(fā)現(xiàn)原來是一塊做實驗的有機蓄電池在發(fā)光,。OLED研究就此開始,鄧博士由此也被稱為OLED之父,。
而OLED正式商用是則在1987年,,柯達公司推出了一款OLED雙層器件,展現(xiàn)出了OLED優(yōu)異的性能:更薄,、更黑,、響應更快。隨之越來越多的國際巨*加入了對OLED的研發(fā),。
整體上看OLED的應用大致可以分為3個階段,。
1997年~2001年:OLED的試用階段,。1997年OLED由日本先鋒公司在全*第一個商業(yè)化生產(chǎn)并用于汽車音響,作為車載顯示器運用于市場,。
2002年~2005年:OLED的成長階段,。在這段時期人們開始逐漸接觸到更多帶有OLED的產(chǎn)品,例如車載顯示器,,PDA(包括電子詞典,、手持電腦和個人通訊設備等)、相機,、手持游戲機,、檢測儀器等。但主要以10寸以下的小面板為主,。
2005年以后:OLED開始走向一個成熟化的階段,。廠商們紛紛推出成熟的產(chǎn)品。LGD,SMD先后推出55英寸OLED電視,。2017年蘋果十周年紀念手機iPhoneX采用OLED屏幕,。所以OLED從首*商業(yè)應用到成功推出55英寸電視屏僅僅用了16年時間,而LCD走過這段歷程則花了32年時間,,可見全球OLED產(chǎn)業(yè)發(fā)展非常迅猛,。
6. 微小的LED陣列(Micro-LED)
科學的進步和創(chuàng)新永*止步,近年來一種名為微發(fā)光二極管(Micro-LED)的技術風靡全球,。Micro-LED 技術雖然還在研發(fā)階段,但已吸引各大廠商紛紛注資,,成為未來的顯示技術的重要研發(fā)方向之一,。
Micro-LED可以認為是LED陣列的微縮版本,就是微型化的LED,,是目前主流LED大小的1%,。Micro-LED就是將LED結構設計進行薄膜化、微小化以及陣列化后,,將Micro-LED巨量轉(zhuǎn)移到電路基板上,,再利用物理沉積技術生成上電極及保護層,形成微小間距的LED,。Micro-LED的尺寸僅在1~10μm等級左右,,是目前主流LED大小的1%,每一個Micro-LED可視為一個像素,,同時它還能夠?qū)崿F(xiàn)對每個像素的定址控制,、單獨驅(qū)動發(fā)光。
Micro-LED與其他顯示技術相比,,優(yōu)勢明顯,,但是制造技術目前并不成熟,。限制Micro LED產(chǎn)業(yè)化的一個重要原因是巨量轉(zhuǎn)移,各大面板廠都在致力于如何將幾百萬個LED高度集成在一起,。
2012年,,索尼公司率*將Micro-LED技術應用在消費電子領域。隨后,,蘋果公司,、三星公司積極投入Micro-LED技術的研發(fā),并將之作為下一代顯示技術,。在2018年CES上,,三星發(fā)布了世*上第一款Micro-LED技術的電視,取名“THEWALL”,,電視大小156寸,。
Micro-LED典型結構是一個PN接面二極管,由直接能隙半導體材料構成,。當對Micro-LED上下電極施加一正向偏壓,,致使電流通過時,電子,、空穴對于主動區(qū)復合,,發(fā)射出單一色光。Micro-LED的基本構造分為四塊,,最下面是襯底,,上一層是電極,再往上是RGB排列的Micro-LED,,最外層是玻璃面板,。RGB三個子像素組成一個像素。對于一個4K電視機,,是八百萬個這樣的微觀結構組成的,。由上面的對比圖可見,Micro-LED能達到比OLED更輕薄的效果,。
Micro-LED還是一個正在蓬勃發(fā)展的技術,,相信隨著各大顯示制造廠商的大筆資金投入,再加上物理學家,、化學家,、工程師等相關人員的積極參與,Micro-LED會在未來的某個時間段會有大的進展,。
7. 其他
還有一些其他顯示技術,,例如QLED、LCoS,、投影技術,、AR,、VR、MR等,。他們要么是過渡產(chǎn)品,,要么是基于LCD、OLED,、MicroLED等顯示技術,,結合其他光學零件,實現(xiàn)虛擬成現(xiàn)象的產(chǎn)品,,本質(zhì)上并不是顯示介質(zhì)的更新,。
8. 結語
上面這些不同的顯示技術的發(fā)明和大規(guī)模使用沒有明顯的時間界限,通常是有交疊的,。例如,,在彩色CRT顯示屏大規(guī)模使用時,LCD就已經(jīng)在小規(guī)模的使用了,。隨著LCD的尺寸越來越大,,技術越來越成熟,在2000年以后獲得了快速發(fā)展,,并逐漸替代了CRT顯示屏,。再如,等離子體顯示屏一段時間與CRT顯示屏相比,,尺寸和顯示效果有了很大的提升,,進而獲得了一定份額的市場。但是和LCD相比,,劣勢卻非常明顯,,所以隨著LCD顯示屏的廣泛應用,等離子體顯示屏和CRT顯示屏一樣,,迅速的被淘汰了。
免責聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,,均為浙江興旺寶明通網(wǎng)絡有限公司-化工儀器網(wǎng)合法擁有版權或有權使用的作品,,未經(jīng)本網(wǎng)授權不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品,。已經(jīng)本網(wǎng)授權使用作品的,,應在授權范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”,。違反上述聲明者,,本網(wǎng)將追究其相關法律責任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,,目的在于傳遞更多信息,,并不代表本網(wǎng)贊同其觀點和對其真實性負責,,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體,、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,,必須保留本網(wǎng)注明的作品第一來源,并自負版權等法律責任,。
- 如涉及作品內(nèi)容,、版權等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,,否則視為放棄相關權利,。