摘要
TCA 3DP-160 3D熱物性分析儀是目前行業(yè)內(nèi)測定軟包鋰電池各向異性導熱系數(shù)最為有效的測試儀器,。本文主要介紹針對不同類型的電芯如何設(shè)計合理的測試方案,以期獲得更準確的測試結(jié)果,。
一,、原理回顧
3D熱物性分析儀是一款原創(chuàng)儀器,,測試原理基于紅外熱像儀測溫與三維熱數(shù)據(jù)反演技術(shù),。如圖1所示。測試過程中,,將柔性電熱片粘貼在軟包鋰電池底部,,施加脈沖熱激勵,并使用紅外熱像儀對電池上表面進行非接觸測溫,,記錄溫度空間分布及時間演變數(shù)據(jù),。結(jié)合溫度數(shù)據(jù)和被測對象的三維熱傳遞數(shù)值模型,利用智能優(yōu)化算法進行熱參數(shù)反演計算,,能夠同時求取電池面向與縱向?qū)嵯禂?shù)(kx,、kz),求解得到的熱參數(shù)可以實現(xiàn)模型預測誤差最小化,。
樣品內(nèi)部真實的傳熱路徑與數(shù)值模型的吻合程度決定了測試結(jié)果的置信度,。上述指標可以通過反演計算過程生成的誤差曲線進行定性評估,誤差曲線呈現(xiàn)“V”字形,,形狀越尖銳則代表測量結(jié)果的置信度越高,,即觀測溫度對導熱系數(shù)的偏差越“敏感”,。如圖2所示,,在理想條件下,加熱片釋放的熱流穿透電芯傳導至上表面,;當存在加熱片不適配或參數(shù)設(shè)置不合理等情況下,,一方面將存在不可忽略的熱流分量沿鋁塑膜進行傳導,形成樣品表面熱流環(huán)路,,偏離計算模型,,降低測量準確性;另一方面,,若觀測面的溫升幅值過小,,溫度噪聲帶來的隨機誤差將導致測量精度下降。
圖1 TCA 3DP-160 3D熱物性分析儀測試原理
左:儀器外觀,;中:測試原理示意圖,;右:預測誤差與誤差曲線
圖2 不同尺寸的電加熱片導致熱傳導路徑差異示意圖
根據(jù)上述測量原理,理想的熱激勵源應(yīng)具備加熱面積小和加熱功率大的特點,,而加熱方案如加熱時長和周期等參數(shù)設(shè)置需要與樣品及加熱源特性相匹配,。本文選擇3個典型尺寸的樣品,重點介紹加熱片選型和加熱方案設(shè)計思路,,結(jié)合具體的應(yīng)用實例幫助用戶獲得更有效的測試數(shù)據(jù),。
二、樣品準備
如圖3,本文選擇2款儲能電池和1款手機電池共3種樣品進行測試,。上述樣品的尺寸具有一定的代表性,,其中15Ah儲能電池為常規(guī)尺寸,25Ah儲能電池厚度較大,,而3.5Ah手機電池尺寸小,,需根據(jù)樣品尺寸特點選擇不同規(guī)格的加熱片進行實驗。具體樣品信息如表1所示,。
圖3 3種電池樣品照片
表1 測試樣品信息
三,、樣品測試
1.15Ah軟包電池測試
該樣品為比較典型的軟包電池尺寸之一,由于長邊/厚度的比值較大(>20),,熱流能夠快速穿透電池,,中心點升溫較快,容易在上表面產(chǎn)生明顯的溫度梯度,。因此在確保足夠信噪比的前提下,,可以適當降低加熱功率或縮短加熱時間,縮小在樣品大面方向的溫度擴散范圍,,從而避免熱流環(huán)路影響,。本實驗選擇儀器標配的加熱片,尺寸為54mm*36mm,,使用加熱方案為:加熱功率8W,,加熱時間30s,加熱周期1個,。
上述測試方案能夠取得較理想的結(jié)果,。如圖4所示,溫度預測結(jié)果和實測數(shù)據(jù)的吻合程度非常高,,觀測面的預測誤差控制在0.12℃以內(nèi),。同時觀察圖4e和圖4f,面向和縱向?qū)嵯禂?shù)的誤差曲線均呈現(xiàn)尖銳的V字形,,測試結(jié)果的置信度高,。優(yōu)化計算結(jié)果為kx=23.93 W/(m·K),kz=0.36 W/(m·K),。
圖4 15Ah軟包電池測試(a) 加熱片安裝方式,;(b) 預測誤差空間分布圖;樣品中心點位置溫度時變曲線(b)仿真與(c)實測結(jié)果對比,;(e)縱向與(f)面向?qū)嵯禂?shù)誤差曲線
2. 25Ah軟包電池測試
該樣品厚度大于常規(guī)電池,,長邊/厚度的比值僅為11.5。為了在觀測面建立足夠的溫度梯度,,相較于樣品1需要更長的加熱時間及更高的加熱功率,,但同時容易導致熱流環(huán)路效應(yīng),。為解決此問題,與標配加熱片相比,,本實驗選用的加熱片提高了加熱功率,,并減小了尺寸,其規(guī)格為29mm*23mm,。使用加熱方案為:加熱功率28W,,加熱時間75s,冷卻時間150s,,加熱周期2個,。
利用上述測試方案能夠兼顧測量準確性和精度。如圖5所示,,觀測面的預測誤差控制在0.2℃以內(nèi),,同時面向和縱向?qū)嵯禂?shù)的誤差曲線均反映出較高的置信度,測試結(jié)果為kx=22.34W/(m·K),,kz=0.57 W/(m·K),。
圖5 25Ah軟包電池測試(a)加熱片安裝方式;(b)預測誤差空間分布圖,;樣品中心點位置溫度時變曲線(b)仿真與(c)實測結(jié)果對比,;(e)縱向與(f)面向?qū)嵯禂?shù)誤差曲線
3. 3.5Ah小型軟包電池測試
由于該樣品尺寸小,長邊/厚度的比值同樣僅為11.8,,和樣品2的情況相仿,,需選擇加熱功率大而尺寸盡可能小的加熱片。本實驗選擇的加熱片尺寸為6mm*3mm,,使用加熱方案為:加熱功率4W,,加熱時間10s,,加熱周期1個,。
如圖6所示,利用上述測試方案,,觀測面的預測誤差可控制在0.15℃以內(nèi),。由于加熱片尺寸很小,且加熱時間短,,限制了大面方向的熱擴散,;同時,較高的加熱功率也確保了觀測面達到足夠的溫升幅值,。因此,,圖6e和6f同樣表明測試結(jié)果的置信度較高。優(yōu)化計算結(jié)果為kx=25.91 W/(m·K),,kz=0.91 W/(m·K),。
圖6 3.5Ah小型軟包電池測試(a)加熱片安裝方式,;(b)預測誤差空間分布圖;樣品中心點位置溫度時變曲線(b)仿真與(c)實測結(jié)果對比,;(e)縱向與(f)面向?qū)嵯禂?shù)誤差曲線
四,、總結(jié)
3D熱物性分析儀能夠準確、高效地分析軟包鋰電池導熱系數(shù),。而合理的測試方案能夠進一步提升測試結(jié)果的準確性和精度,。結(jié)合用戶需求,杭州之量科技有限公司提供不同規(guī)格的加熱元件,,并開發(fā)了加熱方案智能推薦算法,,可根據(jù)樣品特性自動設(shè)置合理的實驗參數(shù),顯著降低儀器操作難度,,確保用戶能夠便捷使用,。
相關(guān)產(chǎn)品
免責聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載,、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,,應(yīng)在授權(quán)范圍內(nèi)使用,,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,,本網(wǎng)將追究其相關(guān)法律責任,。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,,并不代表本網(wǎng)贊同其觀點和對其真實性負責,,不承擔此類作品侵權(quán)行為的直接責任及連帶責任。其他媒體,、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,,必須保留本網(wǎng)注明的作品第一來源,并自負版權(quán)等法律責任,。
- 如涉及作品內(nèi)容,、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,,否則視為放棄相關(guān)權(quán)利,。