當(dāng)前位置:大昌洋行(上海)有限公司(大昌華嘉科學(xué)儀器部)>>技術(shù)文章>>NLDFT法和GCMC法研究柱形多孔材料
NLDFT法和GCMC法研究柱形多孔材料
迄今為止,基于吸附勢(shì)理論的HK法(狹縫孔),、SF法(圓柱孔)和CY法(籠形孔)已用于各種多孔材料的孔隙結(jié)構(gòu)評(píng)價(jià),基于毛細(xì)管凝結(jié)理論的 INNES 方法(狹縫孔)和 BJH 方法 (圓柱孔)等經(jīng)典的孔徑分析方法,應(yīng)用于中-大孔范圍內(nèi)孔徑分析,,這是由于其孔結(jié)構(gòu)的不同。另一方面,,近年來,,人們開始關(guān)注通過計(jì)算機(jī)模擬方法來評(píng)估孔結(jié)構(gòu),如NLDFT(非定域密度泛函)法和GCMC(巨正則蒙特卡洛)法等,,這兩種方法用一個(gè)統(tǒng)一的理論從微孔到中-大孔進(jìn)行全孔分析,。即使對(duì)比經(jīng)典和新的孔徑分布分析法,從同一吸附等溫線中獲得的孔徑大小峰值和孔徑分布是不同的,,因?yàn)槊總€(gè)理論得出的填充壓力不同,。
NLDFT 方法假設(shè)一個(gè)孔形狀(孔尺寸),確定一些參數(shù),,如在吸附溫度和壓力下的吸附質(zhì)分子之間的相互作用,、構(gòu)成吸附劑材料的原子之間的相互作用,以及吸附分子和組成吸附劑材料的原子之間的相互作用,??紫吨械奈矫芏仁褂妹芏确汉ǖ慕乒絹泶_定。相比之下,,GCMC 方法通過模擬吸附現(xiàn)象的計(jì)算模擬法來計(jì)算吸附密度,,其它相互作用等參數(shù)如上述一樣確定,吸附分子被放入虛擬的孔隙空間,,吸附分子的轉(zhuǎn)移,、產(chǎn)生和消失被重復(fù),如果接地電位為負(fù)(穩(wěn)定),,吸附被接受,,如果接地電位為負(fù)(穩(wěn)定),吸附密度被反轉(zhuǎn)。這些差異表明,,NLDFT 方法的吸附相密度低于 GCMC 方法,,導(dǎo)致填充壓力評(píng)估過高(圖 1)。換句話說,, NLDFT方法可能導(dǎo)致過度評(píng)估孔隙體積和過度評(píng)估孔隙大小,。NLDFT 和 GCMC 法哪一個(gè)方法適合孔隙分布?此外,,雖然IUPAC2015中建議的吸附質(zhì)是Ar吸附,,但是N2吸附在多大程度上有用?我們將具體分析并測(cè)試圓柱形孔的材料如介孔二氧化硅 MCM41,、MFI(10元環(huán)) 和MTW(12元環(huán))沸石的N2(77.4K)和Ar(87.3K)的吸附等溫線,。
介孔二氧化硅MCM41的N2@77.4 K和[email protected] K吸脫附等溫線(圖2)被分類為 IVb型,顯示存在介孔,。圖3是使用GCMC方法獲得的各個(gè)吸附質(zhì)(N2@77.4 K,,[email protected] K)下的孔隙分布,以及使用NLDFT方法獲得的[email protected] K的孔隙分布,。從中可以證實(shí),,分析介孔MCM41的N2@77.4K和[email protected]等溫線可得到相同的孔分布,通過GCMC和NLDFT方法,。
MFI型(10元環(huán))分子篩(Si/Al=500:1000H)的N2@77.4 K,,[email protected] K 的吸附等溫線(圖4)被歸類為 type I 型,并顯示存在微孔,。圖5是使用GCMC方法(N2@77.4 K, [email protected] K)獲得的孔隙分布,,以及使用NLDFT方法([email protected] K)得到的孔隙分布。GCMC方法的孔隙分布與IZAs(國(guó)際分子篩協(xié)會(huì))所得出的孔徑大小相吻合,,所得出的孔徑大小相吻合,,NLDFT方法的孔隙分布由于核文件問題而使得孔徑分布較寬,0.4-0.5nm的孔徑實(shí)際上并不存在,。
圖6比較了MFI(25H)和Si/Al=12.5的吸脫附等溫線( N2@77.4 K 和 [email protected] K),。由于N2四極子的介入,25H被強(qiáng)吸附在沸石的孔隙表面,,吸附量從低相對(duì)壓力開始逐漸增加并填充微孔,。然而,1000H 的微孔填充是發(fā)生在p/p0=1E-6附近,,此處吸附量急劇增加,。另一方面,在[email protected] K吸附中,,因?yàn)锳r是非極性的,,可以證實(shí),,無論表面性質(zhì)如何,25H和1000H的在p/p0=1E?6的吸附量增加是一樣的,。在25H的N2@77.4 K吸附中,,GCMC法分析孔徑分布(圖7),N2分子由于具有四極矩而強(qiáng)烈附著在Al+位點(diǎn)上,,導(dǎo)致在0.4nm處出現(xiàn)一個(gè)小假峰,。
基于上述情況,在MFI沸石(10元環(huán))中,,采用N2吸附氣體的GCMC方法可以分析除Al+位點(diǎn)以外的合理的孔隙分布(>0.5nm),。因此,,Ar作為吸附氣體的GCMC方法可以正確分析孔徑分布和孔容,。
MTWs(ZSM-12,12元環(huán))的[email protected]的GCMC法和NLDFT方法(圖8)的孔徑分布分析表明,,GCMC法的孔徑分布與IZA所得到的孔結(jié)構(gòu)非常一致,。NLDFT 方法的孔徑分布由于核文件問題(圖 1)而被低估,假設(shè)Ar分子直徑 =0.34nm時(shí),,NLDFT計(jì)算的0.58 nm 圓柱形孔的孔容(0.14cm3)被高估,。因此,可以證實(shí)孔徑分布是過度評(píng)估的,。
綜上所述,,對(duì)圓柱形介孔材料進(jìn)行孔隙分布評(píng)價(jià),NLDFT和 GCMC采用N2和Ar作為吸附質(zhì)都是合適的,。此外,,對(duì)于形狀相同的微孔沸石,當(dāng)孔徑大于0.4 nm時(shí),,Ar吸附的GCMC方法在孔分布分析中是的(僅由8元環(huán)沸石證實(shí),;本版本未描述)??梢哉f,,N2吸附方法可以進(jìn)行恰當(dāng)?shù)目追植迹?gt;0.5nm)分析,除了Al+位點(diǎn),。此外,,無論吸附質(zhì)如何,無論孔體積在孔結(jié)構(gòu)評(píng)估中過度評(píng)價(jià)(如帶微孔的沸石),,我們還是推薦在NLDFT計(jì)算中采用GCMC法,。