柔性可拉伸電子器件具有可彎曲,、可拉伸和可扭曲的優(yōu)異力學(xué)特性,,其在生物醫(yī)學(xué)工程、機器人技術(shù),、人機界面等各個領(lǐng)域的應(yīng)用重要性日益凸顯,。常見制備方法一方面是開發(fā)本征可拉伸的導(dǎo)電材料,例如摻雜導(dǎo)電納米材料的軟彈性體,、導(dǎo)電聚合物和水凝膠等,。但是,這些新型材料通常電導(dǎo)率較低,、機電穩(wěn)定性能較差和易對實際應(yīng)用中的電信號造成干擾,。另一方面則是通過構(gòu)建如平面蛇形等幾何結(jié)構(gòu)來提升傳統(tǒng)導(dǎo)電材料(包括金屬等)在力學(xué)服役下的最大可拉伸應(yīng)變。雖然以上兩種(結(jié)合)方法都已有大量報道,,然而大部分的可拉伸電子受限于加工方式的難度,,制備的結(jié)構(gòu)大多集中在二維平面尺度,,限制了可拉伸電子在三維方向的應(yīng)用擴展。
近日,,香港城市大學(xué)機械工程學(xué)系陸洋,,南方科技大學(xué)葛锜與西安電子科技大學(xué)高立波等合作報道了一種相對便捷、靈活和可批量制造的可拉伸微電子的高精度制作方法,。通過利用摩方精密開發(fā)的基于面投影微立體光刻(PμSL)的3D打印技術(shù)(nanoArch P130, S140, BMF Precision, Shenzhen, China),,實現(xiàn)了一種通用的微加工工藝,可以以2μm的高分辨率獲得以前無法實現(xiàn)的復(fù)雜3D幾何形狀,。后續(xù)結(jié)合磁控濺射工藝,,可制備3D導(dǎo)電結(jié)構(gòu),該結(jié)構(gòu)具有出色的可拉伸性(~130%),、貼合性,、穩(wěn)定的導(dǎo)電性(在100%拉伸應(yīng)變下電阻變化小于5%),以及循環(huán)載荷下的穩(wěn)定性,。與2D結(jié)構(gòu)相比,,3D微結(jié)構(gòu)具有緊湊的幾何形狀,并且其可以在平面外自由變形的特點使適應(yīng)更大的拉伸應(yīng)變成為可能,。
圖1. 基于面投影微立體光刻(PμSL)3D打印的可拉伸微電子的制作過程:3D幾何設(shè)計、PμSL 3D打印,、磁控濺射導(dǎo)電金屬薄膜,、組裝和應(yīng)用
此外,利用基于PμSL的3D打印技術(shù)可以制作高度復(fù)雜幾何結(jié)構(gòu)的優(yōu)勢,,該方法可實現(xiàn)集成電路的一體化制造,。例如,研究者們制造了由三維可拉伸微結(jié)構(gòu)連接的復(fù)雜三維電容式壓力傳感器陣列,。憑借其結(jié)構(gòu)設(shè)計高通量性,、加工方式便利性和器件制造一體化性,該研究成果在集成3D可拉伸電子系統(tǒng)上顯示出巨大的應(yīng)用潛力,。
圖2. 三維可拉伸導(dǎo)電微結(jié)構(gòu)的力學(xué)和電學(xué)魯棒性測試:拉伸,、彎曲、循環(huán)和面外壓縮加載下的電阻變化
圖3. 3D打印三維可拉伸電子網(wǎng)絡(luò)結(jié)構(gòu)表征和變形能力測試
圖4. 三維可拉伸電容式壓力傳感器陣列示意圖,、細觀實物圖和性能測試結(jié)果
該項研究成果獲得深圳市科創(chuàng)委基礎(chǔ)研究項目支持,,以“Three-Dimensional Stretchable Microelectronics by Projection Micro Stereolithography (PμSL)"為題發(fā)表于新一期國際知.名期刊《ACSApplied Materials & Interfaces》(香港城市大學(xué)王月皎博士生為第一作者)。
(空格分隔,最多3個,單個標(biāo)簽最多10個字符)
立即詢價
您提交后,,專屬客服將第一時間為您服務(wù)