掃描隧道顯微鏡的英文縮寫是STM,。這是20世紀(jì)80年代初期出現(xiàn)的一種新型表面分析工具。其基本原理是基于量子力學(xué)的隧道效應(yīng)和三維掃描,。它是用一個極細(xì)的尖針,,針尖頭部為單個原子去接近樣品表面,當(dāng)針尖和樣品表面靠得很近,,即小于1納米時,,針尖頭部的原子和樣品表面原子的電子云發(fā)生重疊。此時若在針尖和樣品之間加上一個偏壓,,電子便會穿過針尖和樣品之間的勢壘而形成納安級10A的隧道電流,。通過控制針尖與樣品表面間距的恒定,并使針尖沿表面進(jìn)行精確的三維移動,,就可將表面形貌和表面電子態(tài)等有關(guān)表面信息記錄下來,。掃描隧道顯微鏡具有很高的空間分辨率,橫向可達(dá)0.1納米,,縱向可優(yōu)于0.01納米,。
掃描隧道顯微鏡(STM)的基本原理是利用量子理論中的隧道效應(yīng)。將原子線度的極細(xì)探針和被研究物質(zhì)的表面作為兩個電極,,當(dāng)樣品與針尖的距離非常接近時(通常小于1nm),,在外加電場的作用下,電子會穿過兩個電極之間的勢壘流向另一電極,。這種現(xiàn)象即是隧道效應(yīng),。
隧道電流強(qiáng)度對針尖與樣品表面之間距非常敏感,如果距離S減小0.1nm,,隧道電流將增加一個數(shù)量級,,因此,利用電子反饋線路控制隧道電流的恒定,,并用壓電陶瓷材料控制針尖在樣品表面的掃描,,則探針在垂直于樣品方向上高低的變化就反映出了樣品表面的起伏,這種掃描方式可用于觀察表面形貌起伏較大的樣品.
對于起伏不大的樣品表面,可以控制針尖高度守恒掃描,,通過記錄隧道電流的變化亦可得到表面態(tài)密度的分布,。這種掃描方式的特點(diǎn)是掃描速度快,能夠減少噪音和熱漂移對信號的影響,,但一般不能用于觀察表面起伏大于1nm的樣品,。
掃描隧道顯微鏡(STM)所觀察的樣品必須具有一定程度的導(dǎo)電性,,對于半導(dǎo)體,觀測的效果就差于導(dǎo)體,;對于絕緣體則根本無法直接觀察,。如果在樣品表面覆蓋導(dǎo)電層,則由于導(dǎo)電層的粒度和均勻性等問題又限制了圖象對真實(shí)表面的分辨率,。賓尼等人1986年研制成功的AFM可以彌補(bǔ)掃描隧道顯微鏡(STM)這方面的不足,。