淮南ic厭氧反應(yīng)器預(yù)支優(yōu)質(zhì)生產(chǎn)廠家
淮南ic厭氧反應(yīng)器預(yù)支優(yōu)質(zhì)生產(chǎn)廠家
污水處理技術(shù)之淺談高濃度氨氮廢水處理
過量氨氮排入水體將導(dǎo)致水體富營養(yǎng)化,降低水體觀賞價(jià)值,,并且被氧化生成的硝酸鹽和亞硝酸鹽還會影響水生生物甚至人類的健康,。因此,廢水脫氮處理受到人們的廣泛關(guān)注,。
目前,,主要的脫氮方法有生物硝化反硝化、折點(diǎn)加,、氣提吹脫和離子交換法等,。
消化污泥脫水液、垃圾滲濾液,、催化劑生產(chǎn)廠廢水,、肉類加工廢水和合成氨化工廢水等含有*濃度的氨氮(500 mg/L以上,甚至達(dá)到幾千mg/L),,以上方法會由于游離氨氮的生物抑制作用或者成本等原因而使其應(yīng)用受到限制,。
高濃度氨氮廢水的處理方法可以分為物化法、生化聯(lián)合法和新型生物脫氮法,。
物化法
吹脫法
在堿性條件下,,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關(guān)系進(jìn)行分離的一種方法。一般認(rèn)為吹脫效率與溫度,、pH,、氣液比有關(guān)。
控制吹脫效率高低的關(guān)鍵因素是溫度,、氣液比和pH,。
在水溫大于25 ℃,氣液比控制在3500左右,滲濾液pH控制在10.5左右,,對于氨氮濃度高達(dá)2000~4000 mg/L的垃圾滲濾液,,去除率可達(dá)到90%以上。
吹脫法在低溫時(shí)氨氮去除效率不高,。
采用超聲波吹脫技術(shù)對化肥廠高濃度氨氮廢水(例如882 mg/L)進(jìn)行了處理試驗(yàn),。工藝條件為pH=11,超聲吹脫時(shí)間為40min,,氣水比為l000:1試驗(yàn)結(jié)果表明,廢水采用超聲波輻射以后,,氨氮的吹脫效果明顯增加,,與傳統(tǒng)吹脫技術(shù)相比,,氨氮的去除率增加了17%~164%,在90%以上,,吹脫后氨氮在100 mg/L以內(nèi),。
為了以較低的代價(jià)將pH調(diào)節(jié)至堿性,需要向廢水中投加一定量的氫氧化鈣,,但容易生水垢,。同時(shí),為了防止吹脫出的氨氮造成二次污染,,需要在吹脫塔后設(shè)置氨氮吸收裝置,。
在處理經(jīng)UASB預(yù)處理的垃圾滲濾液(2240 mg/L)時(shí)發(fā)現(xiàn)在pH=11.5,反應(yīng)時(shí)間為24 h,,僅以120 r/min的速度梯度進(jìn)行機(jī)械攪拌,,氨氮去除率便可達(dá)95%。
而在pH=12時(shí)通過曝氣脫氨氮,,在第17小時(shí)pH開始下降,,氨氮去除率僅為85%。
據(jù)此認(rèn)為,,吹脫法脫氮的主要機(jī)理應(yīng)該是機(jī)械攪拌而不是空氣擴(kuò)散攪拌,。
沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進(jìn)行交換以達(dá)到脫氮的目的。
沸石一般被用于處理低濃度含氨廢水或含微量重金屬的廢水,。然而,,研究結(jié)果表明,每克沸石具有吸附15.5 mg氨氮的極限潛力,,當(dāng)沸石粒徑為30~16目時(shí),,氨氮去除率達(dá)到了78.5%,且在吸附時(shí)間,、投加量及沸石粒徑相同的情況下,,進(jìn)水氨氮濃度越大,吸附速率越大,,沸石作為吸附劑去除滲濾液中的氨氮是可行的,。
用沸石離子交換法處理經(jīng)厭氧消化過的豬肥廢水時(shí)發(fā)現(xiàn)Na-Zeo、Mg-Zeo,、Ca-Zeo,、k-Zeo中Na-Zeo沸石效果好,其次是Ca-Zeo,。增加離子交換床的高度可以提高氨氮去除率,,綜合考慮經(jīng)濟(jì)原因和水力條件,床高18 cm(H/D=4),,相對流量小于7.8BV/h是比較適合的尺寸,。離子交換法受懸浮物濃度的影響較大,。
應(yīng)用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法,。采用焚燒法時(shí),,產(chǎn)生的氨氣必須進(jìn)行處理。
膜分離技術(shù)
利用膜的選擇透過性進(jìn)行氨氮脫除的一種方法,。這種方法操作方便,,氨氮回收率高,無二次污染,。采用電滲析法和聚丙烯(PP)中空纖維膜法處理高濃度氨氮無機(jī)廢水可取得良好的效果,。
電滲析法處理氨氮廢水2000~3000 mg/L,去除率可在85%以上,,同時(shí)可獲得8.9%的濃氨水,。此法工藝流程簡單、不消耗藥劑,、運(yùn)行過程中消耗的電量與廢水中氨氮濃度成正比,。PP中空纖維膜法脫氨效率>90%,回收的硫酸銨濃度在25%左右,。運(yùn)行中需加堿,,加堿量與廢水中氨氮濃度成正比。
乳化液膜是種以乳液形式存在的液膜具有選擇透過性,,可用于液-液分離,。分離過程通常是以乳化液膜(例如煤油膜)為分離介質(zhì),在油膜兩側(cè)通過NH3的濃度差和擴(kuò)散傳遞為推動(dòng)力,,使NH3進(jìn)入膜內(nèi),,從而達(dá)到分離的目的。
用液膜法處理某濕法冶金廠總排放口廢水(1000~1200 mgNH4+-N/L,,pH為6~9),,當(dāng)采用烷醇酰胺聚氧乙烯醚為表面活性劑用量為4%~6%,廢水pH1.4MAP沉淀法,。
主要是利用以下化學(xué)反應(yīng):
Mg2 ++NH4++PO43-=MgNH4PO4
理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,,當(dāng)[Mg2 + ][NH4+][PO43 -]>2.5×10–13時(shí)可生成磷酸銨鎂(MAP),除去廢水中的氨氮,。向氨氮濃度較高的工業(yè)廢水中投加MgCl2?6H2O和Na2HP04?12H20生成磷酸銨鎂沉淀的方法,,以去除其中的高濃度氨氮。
結(jié)果表明,,在pH為8.9l,,Mg2+,NH4,P043-的摩爾比為1.25:1:1,,反應(yīng)溫度為25 ℃,,反應(yīng)時(shí)間為20 min,沉淀時(shí)間為20 min的條件下,,氨氨質(zhì)量濃度可由9500 mg/L降低到460 mg/L,去除率達(dá)到95%以上,。
由于在多數(shù)廢水中鎂鹽的含量相對于磷酸鹽和氨氮會較低,,盡管生成的磷酸銨鎂可以做為農(nóng)肥而抵消一部分成本,投加鎂鹽的費(fèi)用仍成為限制這種方法推行的主要因素,。
海水取之不盡,,并且其中含有大量的鎂鹽。以海水做為鎂離子源試驗(yàn)研究了磷酸銨鎂結(jié)晶過程,。鹽鹵是制鹽副產(chǎn)品,,主要含MgCl2和其他無機(jī)化合物。Mg2+約為32 g/L為海水的27倍,。用MgCl2,、海水、鹽鹵分別做為Mg2+源以磷酸銨鎂結(jié)晶法處理養(yǎng)豬場廢水,,結(jié)果表明,,pH是重要的控制參數(shù),當(dāng)終點(diǎn)pH≈9.6時(shí),,反應(yīng)在10 min內(nèi)即可結(jié)束,。由于廢水中的N/P不平衡,與其他兩種Mg2+源相比,,鹽鹵的除磷效果相同而脫氮效果略差,。
化學(xué)氧化法
利用強(qiáng)氧化劑將氨氮直接氧化成氮?dú)膺M(jìn)行脫除的一種方法。折點(diǎn)加氯是利用在水中的氨與氯反應(yīng)生成氨氣脫氨,,這種方法還可以起到殺菌作用,,但是產(chǎn)生的余氯會對魚類有影響,故必須附設(shè)除余氯設(shè)施,。
在溴化物存在的情況下,,臭氧與氨氮會發(fā)生如下類似折點(diǎn)加氯的反應(yīng):
Br-+O3+H+→HBrO+O2;
NH3+HBrO→NH2Br+H2O;
NH2Br+HBrO→NHBr2+H2O;
NH2Br+NHBr2→N2+3Br-+3H+。
用一個(gè)有效容積32 L的連續(xù)曝氣柱對合成廢水(氨氮600 mg/L)進(jìn)行試驗(yàn)研究,,探討B(tài)r/N,、pH以及初始氨氮濃度對反應(yīng)的影響,以確定去除多的氨氮并形成少的NO3-的反應(yīng)條件,。
發(fā)現(xiàn)NFR(出水NO3--N與進(jìn)水氨氮之比)在對數(shù)坐標(biāo)中與Br-/N成線性相關(guān)關(guān)系,,在Br-/N>0.4,氨氮負(fù)荷為3.6~4.0 kg/(m3/d)時(shí),氨氮負(fù)荷降低則NFR降低,。出水pH=6.0時(shí),,NFR和BrO--Br(有毒副產(chǎn)物)少。BrO--Br可由Na2SO3定量分解,,Na2SO3投加量可由ORP控制,。
生化聯(lián)合法
物化方法在處理高濃度氨氮廢水時(shí)不會因?yàn)榘钡獫舛冗^高而受到限制,但是不能將氨氮濃度降到足夠低(如100 mg/L以下),。而生物脫氮會因?yàn)楦邼舛扔坞x氨或者亞硝酸鹽氮而受到抑制,。實(shí)際應(yīng)用中采用生化聯(lián)合的方法,在生物處理前先對含高濃度氨氮的廢水進(jìn)行物化處理,。
研究采用吹脫-缺氧-好氧工藝處理含高濃度氨氮垃圾滲濾液,。結(jié)果表明,吹脫條件控制在pH=95,、吹脫時(shí)間為12 h時(shí),,吹脫預(yù)處理可去除廢水中60%以上的氨氮,再經(jīng)缺氧-好氧生物處理后對氨氮(由1400 mg/L降至19.4 mg/L)和COD的去除率>90%,。
用生物活性炭流化床處理垃圾滲濾液(COD為800~2700 mg/L,,氨氮為220~800 mg/L)。研究結(jié)果表明,,在氨氮負(fù)荷0.71 kg/(m3/d)時(shí),,硝化去除率可達(dá)90%以上,COD去除率達(dá)70%,,BOD全部去除,。
以石灰絮凝沉淀+空氣吹脫做為預(yù)處理手段提高滲濾液的可生化性,在隨后的好氧生化處理池中加入吸附劑(粉末狀活性炭和沸石),,發(fā)現(xiàn)吸附劑在0~5 g/L時(shí)COD和氨氮的去除效率均隨吸附劑濃度增加而提高,。對于氨氮的去除效果沸石要優(yōu)于活性炭。
膜-生物反應(yīng)器技術(shù)(MBR)是將膜分離技術(shù)與傳統(tǒng)的廢水生物反應(yīng)器有機(jī)組合形成的一種新型高效的污水處理系統(tǒng),。MBR處理效率高,,出水可直接回用,設(shè)備少戰(zhàn)地面積小,,剩余污泥量少,。其難點(diǎn)在于保持膜有較大的通量和防止膜的滲漏。
利用一體化膜生物反應(yīng)器進(jìn)行了高濃度氨氮廢水硝化特性研究,。
研究結(jié)果表明,,當(dāng)原水氨氮濃度為2000 mg/L、進(jìn)水氨氦的容積負(fù)荷為2.0 kg/(m3?d)時(shí),,氨氮的去除率可達(dá)99%以上,,系統(tǒng)比較穩(wěn)定,。反應(yīng)器內(nèi)活性污泥的比硝化速率在半年的時(shí)間內(nèi)基本穩(wěn)定在0.36/d左右。
新型生物脫氮法
近年來國內(nèi)外出現(xiàn)了一些全新的脫氮工藝,,為高濃度氨氮廢水的脫氮處理提供了新的途徑,。主要有短程硝化反硝化、好氧反硝化和厭氧氨氧化,。
短程硝化反硝化
生物硝化反硝化是應(yīng)用廣泛的脫氮方式,。由于氨氮氧化過程中需要大量的氧氣,曝氣費(fèi)用成為這種脫氮方式的主要開支,。短程硝化反硝化(將氨氮氧化至亞硝酸鹽氮即進(jìn)行反硝化),,不僅可以節(jié)省氨氧化需氧量而且可以節(jié)省反硝化所需炭源。
用合成廢水(模擬含高濃度氨氮的工業(yè)廢水)試驗(yàn)確定實(shí)現(xiàn)亞硝酸鹽積累的條件,。要想實(shí)現(xiàn)亞硝酸鹽積累,pH不是一個(gè)關(guān)鍵的控制參數(shù),,因?yàn)閜H在6.45~8.95時(shí),,全部硝化生成硝酸鹽,在pH<6.45或pH>8.95時(shí)發(fā)生硝化受抑,,氨氮積累,。當(dāng)DO=0.7 mg/L時(shí),可以實(shí)現(xiàn)65%的氨氮以亞硝酸鹽的形式積累并且氨氮轉(zhuǎn)化率在98%以上,。DO<0.5 mg/L時(shí)發(fā)生氨氮積累,,DO>1.7 mg/L時(shí)全部硝化生成硝酸鹽。
對低碳氮比的高濃度氨氮廢水采用亞硝玻型和硝酸型脫氮的效果進(jìn)行了對比分析,。試驗(yàn)結(jié)果表明,,亞硝酸型脫氮可明顯提高總氮去除效率,氨氮和硝態(tài)氮負(fù)荷可提高近1倍,。此外,,pH和氨氮濃度等因素對脫氮類型具有重要影響。
短程硝化反硝化處理焦化廢水的中試結(jié)果表明,,進(jìn)水COD,、氨氮、TN 和酚的濃度分別為1201.6,、510.4,、540.1、110.4 mg/L時(shí),,出水COD,、氨氮、TN和酚的平均濃度分別為197.1,、14.2,、181.5,、0.4 mg/L,相應(yīng)的去除率分別為83.6%,、97.2%,、66.4%、99.6%,。
與常規(guī)生物脫氮工藝相比,,該工藝氨氮負(fù)荷高,在較低的C/N值條件下可使TN去除率提高,。
厭氧氨氧化(ANAMMOX)和全程自養(yǎng)脫氮(CANON)
厭氧氨氧化是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮?dú)獾倪^程,。
ANAMMOX的生化反應(yīng)式為:
NH4++NO2-→N2↑+2H2O
ANAMMOX菌是專性厭氧自養(yǎng)菌,因而非常適合處理含NO2-,、低C/N的氨氮廢水,。與傳統(tǒng)工藝相比,基于厭氧氨氧化的脫氮方式工藝流程簡單,,不需要外加有機(jī)炭源,,防止二次污染,又很好的應(yīng)用前景,。
厭氧氨氧化的應(yīng)用主要有兩種:CANON工藝和與中溫亞硝化(SHARON)結(jié)合,,構(gòu)成SHARON-ANAMMOX聯(lián)合工藝。
CANON工藝是在限氧的條件下,,利用*自養(yǎng)性微生物將氨氮和亞硝酸鹽同時(shí)去除的一種方法,,從反應(yīng)形式上看,它是SHARON和ANAMMOX工藝的結(jié)合,,在同一個(gè)反應(yīng)器中進(jìn)行,。
溶解氧控制在1 mg/L左右,進(jìn)水氨氮<800 mg/L,,氨氮負(fù)荷<0.46 kgNH4+/(m3/d)的條件下,,可以利用SBR反應(yīng)器實(shí)現(xiàn)CANON工藝,氨氮的去除率>95%,,總氮的去除率>90%,。
研究表明ANAMMOX和CANON過程都可以在氣提式反應(yīng)器中運(yùn)轉(zhuǎn)良好,并且達(dá)到很高的氮轉(zhuǎn)化速率,??刂迫芙庋踉?.5mg/L左右,在氣提式反應(yīng)器中,,ANAMMOX過程的脫氮速率達(dá)到8.9 kgN/(m3/d),,而CANON過程可以達(dá)到1.5 kgN/(m3/d)。
好氧反硝化
傳統(tǒng)脫氮理論認(rèn)為,,反硝化菌為兼性厭氧菌,,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體,。所以若進(jìn)行反硝化反應(yīng),必須在缺氧環(huán)境下,。
近年來,,好氧反硝化現(xiàn)象不斷被發(fā)現(xiàn)和報(bào)道,逐漸受到人們的關(guān)注,。一些好氧反硝化菌已經(jīng)被分離出來,,有些可以同時(shí)進(jìn)行好氧反硝化和異養(yǎng)硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5),。這樣就可以在同一個(gè)反應(yīng)器中實(shí)現(xiàn)真正意義上的同步硝化反硝化,,簡化了工藝流程,節(jié)省了能量,。
序批式反應(yīng)器處理氨氮廢水,,試驗(yàn)結(jié)果驗(yàn)證了好氧反硝化的存在,好氧反硝化脫氮能力隨混合液溶解氧濃度的提高而降低,,當(dāng)溶解氧濃度為0.5 mg/L時(shí),,總氮去除率可達(dá)到66.0%。
連續(xù)動(dòng)態(tài)試驗(yàn)研究表明,,對于高濃度氨氮滲濾液,普通活性污泥達(dá)的好氧反硝化工藝的總氮去除串可達(dá)10%以上,。硝化反應(yīng)速率隨著溶解氧濃度的降低而下降,;反硝化反應(yīng)速率隨著溶解氧濃度的降低而上升。
硝化及反硝化的動(dòng)力學(xué)分析表明,,在溶解氧為0.14 mg/L左右時(shí)會出現(xiàn)硝化速率和反硝化速率相等的同步硝化反硝化現(xiàn)象,。其速率為4.7mg/(L?h),硝化反應(yīng)KN=0.37 mg/L,;反硝化反應(yīng)KD=0.48 mg/L,。
在反硝化過程中會產(chǎn)生N2O是一種溫室氣體,產(chǎn)生新的污染,,其相關(guān)機(jī)制研究還不夠深入,,許多工藝仍在實(shí)驗(yàn)室階段,需要進(jìn)一步研究才能有效地應(yīng)用于實(shí)際工程中,。另外,,還有諸如全程自養(yǎng)脫氮工藝、同步硝化反硝化等工藝仍處在試驗(yàn)研究階段,,都有很好的應(yīng)用前景,。