![]() |
深圳市奧斯恩凈化技術(shù)有限公司
主營產(chǎn)品: 環(huán)境噪聲揚(yáng)塵監(jiān)測(cè)系統(tǒng),手持式粉塵檢測(cè)報(bào)警儀,在建工地?fù)P塵在線監(jiān)控系統(tǒng),建設(shè)工地?fù)P塵噪聲污染在線監(jiān)測(cè)系統(tǒng) |
![](/NewShowStand/style/15/Images/Green/中級(jí)會(huì)員.png)
聯(lián)系電話
18948352970
公司信息
- 聯(lián)系人:
- 梁經(jīng)理
- 電話:
- 手機(jī):
- 18948352970
- 傳真:
- 86-0755-85296639-604
- 地址:
- 深圳市寶安區(qū)鳳塘大道141號(hào)大洋田工業(yè)區(qū)2棟4樓
- 郵編:
- 518100
- 個(gè)性化:
- www.china-osen.cn
- 網(wǎng)址:
- www.china-aosien.com
參考價(jià) | ¥ 20000 |
訂貨量 | 1套 |
- 型號(hào) OSEN-ZSW
- 品牌 OSEN/奧斯恩
- 廠商性質(zhì) 生產(chǎn)商
- 所在地 深圳市
更新時(shí)間:2024-08-28 17:33:28瀏覽次數(shù):674
聯(lián)系我們時(shí)請(qǐng)說明是化工儀器網(wǎng)上看到的信息,,謝謝!
產(chǎn)地類別 | 國產(chǎn) | 應(yīng)用領(lǐng)域 | 環(huán)保 |
---|
聲明:以上價(jià)格不代表實(shí)際價(jià)格,,需要根據(jù)實(shí)際需求確認(rèn)后方可定價(jià)格,,我司配置有很多種,配置高,,價(jià)格高,,有需要請(qǐng)電話咨詢或者在線聯(lián)系客服,給您帶來不便請(qǐng)諒解!
人類語言的產(chǎn)生是人體語言中樞與發(fā)音器官之間一個(gè)復(fù)雜的生理物理過程,,人在講話時(shí)使用的發(fā)聲器官--舌,、牙齒、喉頭,、肺,、鼻腔在尺寸和形態(tài)方面每個(gè)人的差異很大,所以任何兩個(gè)人的聲紋圖譜都有差異,。每個(gè)人的語音聲學(xué)特征既有相對(duì)穩(wěn)定性,,又有變異性,不是絕對(duì)的,、一成不變的,。這種變異可來自生理、病理,、心理,、模擬,也與環(huán)境干擾有關(guān),。盡管如此,,由于每個(gè)人的發(fā)音器官都不盡相同,因此在一般情況下,,人們?nèi)阅軈^(qū)別不同的人的聲音或判斷是否是同一人的聲音。
聲紋識(shí)別,,也叫聲音識(shí)別,,是一種生物識(shí)別技術(shù),通過轉(zhuǎn)換聲音信號(hào)為電信號(hào),,用計(jì)算機(jī)進(jìn)行特征提取和身份驗(yàn)證,。其生物學(xué)基礎(chǔ)在于生物的語音信號(hào)攜帶著獨(dú)&特的聲波頻譜,就像指紋一樣具有唯&一性和穩(wěn)定性,。
生活噪聲聲紋/聲源AI識(shí)別技術(shù)盒子 二次開發(fā)的主要任務(wù)包括:語音信號(hào)處理,、聲紋特征提取、聲紋建模,、聲紋比對(duì),、判別決策等。
技術(shù)參數(shù)
基于 Pytorch 實(shí)現(xiàn)的聲紋識(shí)別模型:模型是一種基于深度學(xué)習(xí)的說話人識(shí)別系統(tǒng),,其結(jié)構(gòu)中融入了通道注意力機(jī)制,、信息傳播和聚合操作。這個(gè)模型的 關(guān)鍵組成部分包括多層幀級(jí)別的 TDNN 層,、一個(gè)統(tǒng)計(jì)池化層以及兩層句子級(jí)別的全連接層,,此外還配備了一層 softmax,,損失函數(shù)為交叉熵。
特征提?。侯A(yù)加重->分加窗->離散傅里葉變換->梅爾濾波器組->逆離散傅里葉變換 -->image
模型訓(xùn)練集:>15000 個(gè)訓(xùn)練樣本
聲音類型:聲音類型主要?jiǎng)澐譃槲宕箢悇e,,分別為生活噪聲、施工噪聲,、工業(yè)噪聲,、交通噪聲、自然噪聲,,其中包含打雷,,刮風(fēng),敲擊,、蟲鳴鳥叫等不 少于 50 個(gè)聲音子類別
聲紋識(shí)別準(zhǔn)確率:≥85%
識(shí)別響應(yīng)速率:>3s
調(diào)用方式:支持云端調(diào)用或者本地終端調(diào)用
技術(shù)協(xié)議:支持 HTTP 協(xié)議
生活噪聲聲紋/聲源AI識(shí)別技術(shù)盒子 二次開發(fā)技術(shù)特點(diǎn)
1.噪聲聲音類型識(shí)別是指通過機(jī)器學(xué)習(xí)算法,,對(duì)環(huán)境中的噪聲進(jìn)行分類,以判斷其可能的來源和類型,。例如,,區(qū)分機(jī)器噪聲、人聲噪聲,、交通噪聲等,。
2.AI在噪聲聲音類型識(shí)別中的應(yīng)用主要體現(xiàn)在深度學(xué)習(xí)技術(shù)中,特別是卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用,。首先,,需要收集大量的聲音數(shù)據(jù),并利用深度學(xué)習(xí)算法對(duì)這些數(shù)據(jù)進(jìn)行訓(xùn)練,,以提取出有用的特征并進(jìn)行模型優(yōu)化,。然后,將輸入的聲音與已知的聲音模型進(jìn)行比對(duì),,通過計(jì)算輸入聲音的特征與模型之間的距離或相似度,,來確定輸入聲音的身份。
3.此外,,對(duì)于特定的應(yīng)用場(chǎng)景,,如室內(nèi)場(chǎng)景、戶外場(chǎng)景識(shí)別,,公共場(chǎng)所,、辦公室場(chǎng)景識(shí)別等,還可以使用專門的音頻處理前端部分,。
4.值得注意的是,,盡管 AI 在噪聲聲音類型識(shí)別方面有著廣泛的應(yīng)用前景,但是在實(shí)際應(yīng)用中仍然面臨著許多挑戰(zhàn),如噪聲環(huán)境的復(fù)雜性,、語音信號(hào)的多樣性以及模型的優(yōu)化等問題,。因此,如何提高噪聲聲音類型識(shí)別的準(zhǔn)確性和魯棒性,,仍然是未來研究的重要方向,。
技術(shù)路線
1.建立音頻樣例庫,覆蓋面廣,,根據(jù)不同的噪聲監(jiān)管單位將聲音劃分為五大類,,不少于 50 個(gè)聲音子類別;
2.通過深度學(xué)習(xí) AI 技術(shù),,對(duì)噪聲樣本進(jìn)行分析和處理,,提取出其中的聲紋特征,構(gòu)建聲紋識(shí)別模型,;
3.不斷的測(cè)試和優(yōu)化,,提高聲紋識(shí)別模型的準(zhǔn)確性和魯棒性,使其能夠在各種環(huán)境和條件下都能準(zhǔn)確地識(shí)別出聲紋類型,;
4.采用深度卷積神經(jīng)網(wǎng)絡(luò)算法實(shí)現(xiàn)音頻事件的識(shí)別分類,。通過卷積操作對(duì)音頻進(jìn)行時(shí)域特征和 logmel 頻域特征的提取,并結(jié)合波形的時(shí)域特征和頻域特征作為音頻的有效特征,,再通過卷積采樣進(jìn)一步獲取特征圖,,最終以全連接網(wǎng)絡(luò)分類器實(shí)現(xiàn)特征的類別分類。