當(dāng)前位置:梅特勒托利多 METTLER TOLEDO>>公司動(dòng)態(tài)>>開(kāi)學(xué)雙重福利,!在線紅外和拉曼免費(fèi)試用邀請(qǐng)
開(kāi)學(xué)雙重福利,!在線紅外和拉曼免費(fèi)試用邀請(qǐng)

作為先進(jìn)的化學(xué)和生物反應(yīng)分析工具,,在線紅外和在線拉曼技術(shù)已被廣泛應(yīng)用于反應(yīng)機(jī)理和動(dòng)力學(xué),、催化,、聚合、流動(dòng)化學(xué),、生物反應(yīng)與過(guò)程,、結(jié)晶與顆粒、模擬和自動(dòng)化等諸多研究領(lǐng)域,。在過(guò)去數(shù)十年間,,國(guó)內(nèi)外頂尖科學(xué)家和團(tuán)隊(duì)利用梅特勒托利多(METTLER TOLEDO)的在線紅外(ReactIR™)和在線拉曼(ReactRaman™)技術(shù)開(kāi)展了諸多科研項(xiàng)目,并發(fā)表了許多優(yōu)秀的科研成果和文獻(xiàn),。值此開(kāi)學(xué)之際,,我們?yōu)槟鷮⑦@些科研成果整理成冊(cè),以期可以幫助您更深入地了解相關(guān)領(lǐng)域的最新動(dòng)向,。
填寫(xiě)反饋問(wèn)卷或點(diǎn)擊文末“閱讀全文”可免費(fèi)獲取文獻(xiàn)資料合集《化學(xué)領(lǐng)域當(dāng)前的研究課題:過(guò)程分析技術(shù)的作用》


為進(jìn)一步助力學(xué)術(shù)研究和科研成果轉(zhuǎn)化,梅特勒托利多推出在線反應(yīng)分析工具(PAT)限時(shí)免費(fèi)試用活動(dòng),。試用我們的在線紅外和在線拉曼等設(shè)備,,您可以充分發(fā)揮科學(xué)創(chuàng)新力,同時(shí)也可以更高效,、準(zhǔn)確地獲得您所需的實(shí)驗(yàn)數(shù)據(jù)和信息,。與此同時(shí),我們?yōu)槟峁?zhuān)業(yè)的技術(shù)支持和相關(guān)領(lǐng)域文獻(xiàn),,幫助您充分理解和應(yīng)用在線反應(yīng)分析工具,,助力您的研究工作。

心動(dòng)不如行動(dòng),,填寫(xiě)上述反饋問(wèn)卷申請(qǐng)?jiān)囉冒桑?/p>
在線紅外光譜儀 ReactIR™
ReactIR可以幫助科學(xué)家研究化學(xué)反應(yīng)隨時(shí)間的連續(xù)變化,,提供反應(yīng)起點(diǎn),、終點(diǎn)、轉(zhuǎn)變,、動(dòng)力學(xué),、機(jī)理和反應(yīng)途徑等明確的反應(yīng)信息。通過(guò)實(shí)時(shí)的原位中紅外監(jiān)測(cè)系統(tǒng),,ReactIR能夠在反應(yīng)過(guò)程中跟蹤監(jiān)測(cè)關(guān)鍵反應(yīng)組分的濃度變化,,從而幫助科學(xué)家深入理解反應(yīng)過(guò)程,便于對(duì)化合物,、合成路線和化學(xué)工藝的開(kāi)發(fā)研究,。

ReactRaman™光譜儀使科學(xué)家能夠?qū)崟r(shí)測(cè)量反應(yīng)和過(guò)程趨勢(shì),提供關(guān)于動(dòng)力學(xué),、多晶型轉(zhuǎn)換,、機(jī)理以及關(guān)鍵過(guò)程參數(shù)(CPP)影響的高度具體化的信息。使用ReactRaman,,用戶可以直接跟蹤固體和液體反應(yīng)物的濃度,、中間體、產(chǎn)物和晶型在實(shí)驗(yàn)過(guò)程中的變化,。

試用活動(dòng)申請(qǐng)時(shí)間:2024年3月1日–2024年4月30日
試用范圍:高校及科研院所
試用方式:填寫(xiě)上述申請(qǐng)表后,,我們將聯(lián)系您預(yù)約試用時(shí)間并提供技術(shù)支持
利用在線反應(yīng)分析工具,科學(xué)家發(fā)表了眾多高質(zhì)量的文章,,雜志包括Science,、JACS、Green Chemistry,、Nature Communications,、ACS Catal、Angew等國(guó)際學(xué)術(shù)期刊,。下面是部分相關(guān)文獻(xiàn):
1. Sharma, H.A., Essman, J.Z. and Jacobsen, E.N. (2021). Enantioselective Catalytic 1,2-Boronate Rearrangements. Science, 374, 6568, 752-757. https://doi.org/10.1126/science.abm0386.
2. Rezazadeh, S. Photoredox-Nickel Dual-Catalyzed C-Alkylation of Secondary Nitroalkanes: Access to Sterically Hindered α-Tertiary Amines, J. Am. Chem. Soc., 145, 8, 4707–4715. https://doi.org/10.1021/jacs.2c13174.
3. Nielsen, M.M. Stereoselective O-Glycosylations by Pyrylium Salt Organocatalysis. Angew. Chem. 134, 6, e202115394. https://doi.org/10.1002/ange.202115394.
4. Rittinghaus, R.D. Active in Sleep: Iron Guanidine Catalyst Performs ROP on Dormant Side of ATRP. Angew Chem., 60, 40,21795- 21800. http://dx.doi.org/10.1002/anie.202109053.
5. Na, H. Deciphering the Mechanism of the Ni-Photocatalyzed C–O Cross-Coupling Reaction using a Tridentate Pyridinophane Ligand. Nat Commun 13, 1313. https://doi.org/10.1038/s41467-022-28948-8.
6. Xu, J. Diblock Dialternating Terpolymers by One-Step/One-Pot Highly Selective Organocatalytic Multimonomer Polymerization. Nat Commun. 12,7124. https://doi.org/10.1038/s41467-021-27377-3.
7. Köhnke, K, Wessel, N. Operando Monitoring of Mechanisms and Deactivation of Molecular Catalysts. Green Chem., 24, 1951-1972. https://doi.org/10.1039/D1GC04383H.
8. Deem, M.C. Best Practices for the Collection of Robust Time Course Reaction Profiles for Kinetic Studies. ACS Catal., 13, 2, 1418–1430. https://doi.org/10.1021/acscatal.2c05045.
9. Milošev, I.. Siloxane Polyacrylic Sol-Gel Coatings with Alkly and Perfluoroalkyl Chains: Synthesis, Composition, Thermal Properties and Long-Term Corrosion Protection. Applied Surface Science, 574, 151578. https://doi.org/10.1016/j.apsusc.2021.151578.
10. Januszewski, R. The Effect of Organosilicon Modifier Structure on the Efficiency of the Polybutadiene Hydrosilylation Process. Catal. Sci. Technol., 10, 7240–7248. https://doi.org/10.1039/D0CY01376E.
11. Zhang, G. Enhanced Immunotherapy Based on the Synergistic Click Reaction-Mediated Chemotherapy and Photothermal Therapy for Efficient Tumor Inhibition. Chemrxiv. (華南理工大學(xué),、香港大學(xué)、香港科技大學(xué),、南華大學(xué),、南開(kāi)大學(xué))
12. Chao, X. Tuning the Olefin-VOCs Epoxidation Performance of Ceria by Mechanochemical Loading of Coinage Metal. Journal of Hazardous Materials, 441,10, 129888. https://doi.org/10.1016/j.jhazmat.2022.129888. (中山大學(xué))
13. Zhang, Z. Kinetic Insights into Cyanosilylation of Aldehydes Catalyzed by a Covalently Bridged Dinuclear (Salen)titanium Complex.Asian J. Org. Chem. 11, 2, https://doi.org/10.1002/ajoc.202100795. (華東理工大學(xué))
14. Zhang, Y-F. Facile Synthesis, Structure and Properties of CO2- Sourced Poly(thioether-Co-Carbonate)s Containing Acetyl Pendants via Thio-Ene Click Polymerization. Polym. Chem., 13, 201–208. https://doi.org/10.1039/D1PY01477C. (大連理工大學(xué);湖南大學(xué))
15. Yan, Z. Hydrolysis Mechanism of Water-Soluble Ammonium Polyphosphate Affected by Zinc Ions. ACS Omega, 8,20, 17573–17582. https://doi.org/10.1021/acsomega.2c07642. (四川大學(xué))
16. Zhang, Y-Y. Perfectly Alternating Copolymerization of CO and Epoxides to Aliphatic Polyester Oligomers via Cooperative Organoboron-Cobalt Complexes. Macromolecules, 54, 9427-9436. https://doi.org/10.1021/acs.macromol.1c01324. (浙江大學(xué))
17. Li, B. Metal-Free Polycycloaddition of Aldehyde-Activated Internal Diynes and Diazides Toward Post-Functionalizable Poly(formyl-1,2,3-Triazole)s Polym. Chem., 11, 3075–3083. https://doi.org/10.1039/D0PY00193G. (華南理工大學(xué))
18. Fan, P. Dynamic Covalent Bonds of Si-OR and Si-OSi Enabled A Stiff Polymer to Heal and Recycle at Room Temperature. Materials, 14,2680. https://doi.org/10.3390/ma14102680. (中山大學(xué))