當(dāng)前位置:復(fù)納科學(xué)儀器(上海)有限公司>>技術(shù)文章>>如何讓您的鋰電池發(fā)揮更大效能,?試試先進原子層沉積(ALD)技術(shù),!
如何讓您的鋰電池發(fā)揮更大效能,?試試先進原子層沉積(ALD)技術(shù)!
如何讓您的鋰電池發(fā)揮更大效能,?試試先進原子層沉積(ALD)技術(shù),!
當(dāng)今世界正處于轉(zhuǎn)變期,全力邁向電動社會——一個節(jié)能減排,、實現(xiàn)氣候目標(biāo)并抵御嚴(yán)峻氣候變化的社會,。為了實現(xiàn)這一轉(zhuǎn)變,我們需要新的材料和技術(shù),,而鋰已成為這一轉(zhuǎn)變的標(biāo)志性元素,。
可持續(xù)、可預(yù)測的鋰供應(yīng)鏈對于電動汽車(EV),、儲能和電力網(wǎng)絡(luò)的重要性日益明顯,。據(jù)國際能源協(xié)會 (IEA) 稱,到 2040 年,鋰將成為需求量zui*大的礦物質(zhì),。并且到 2030 年,,對鋰的需求量預(yù)計將達到 200 萬噸,才能滿足quan球 2000 GWh 的能源需求,。這在十年內(nèi)增長了 4 倍,,而電動汽車的快速普及甚至可能使實際的需求量超過這一預(yù)測。
圖 1. 與 2020 年相比,,2040 年清潔能源技術(shù)對特定電池相關(guān)礦物的需求增長,。STEPS 和 SDS 代表與氣候政策相關(guān)的兩種不同情景,用于估算需求,,其中 STEPS 是國際能源機構(gòu)提出的有可能的情景,。指數(shù)單位是任意的,以顯示增長,。
01/地球上有多少鋰,?
據(jù)美國地質(zhì)調(diào)查局估計,地殼蘊含約 880 億噸鋰,,其中約四分之一(220 億噸)可開采,,即儲量。根據(jù)每輛電動汽車需要 8 千克鋰的數(shù)量估計,,我們可以生產(chǎn)近 30 億輛電動汽車,,這約為目前道路上汽車數(shù)量的兩倍。
這樣的鋰儲量可以支撐到本世紀(jì)中葉,。值得慶幸的是,,隨著我們發(fā)明出更好的開采方法,鋰儲量也會隨著時間的推移而增加,。
從供應(yīng)角度來看,,這或許是個好消息,但利潤率遠低于應(yīng)有的水平,。盡管目前的鋰儲量可能滿足當(dāng)前的電動轉(zhuǎn)型需求,,但主要問題之一是鋰的生產(chǎn)能力。
未來十年必須擴大鋰產(chǎn)量,,以滿足增長四倍的需求,。因此,即使有足夠的鋰,,如果生產(chǎn)速度和工廠產(chǎn)量無法滿足需求,,人為短缺和供應(yīng)鏈問題將會一直存在。
02/能否緩解這種關(guān)鍵材料短缺的情況,?
也許你還記得電影《無限》中,,布萊德利·庫珀服用了一顆藥丸,,讓他能夠充分發(fā)揮大腦的潛力。那么,,如果我們能用鋰做同樣的事情呢,?
我們可能會錯誤地認為電池在工作時會耗盡其全部電量。然而,,由于界面不穩(wěn)定性以及與電解質(zhì)的寄生反應(yīng),,大多數(shù)先進的鋰離子電池正極只能在電壓小于等于 4.2V 時工作。因此,,為了避免活性材料的大量損失和晶體結(jié)構(gòu)的重新排列,正極只能使用約 50% 的板載鋰含量,。
目前研究人員一直在努力制造穩(wěn)定的高電壓正極,、穩(wěn)定的負極和互補電解質(zhì),但已出現(xiàn)的少數(shù)材料仍然存在庫侖效率低和結(jié)構(gòu)退化的問題,。如果不能保持較高的可逆容量,,那么它們在較高電壓下工作也是徒勞的。
值得注意的是,,以 Wh 為單位測量的能量容量等于電池的標(biāo)稱容量(以安培小時 (Ah) 為單位)乘以電壓 (V),。在較小的電壓下運行,我們只能使用電池潛在能量容量的一小部分,。
但如果像《無限》中那樣,,我們能設(shè)計出一種獲得更多電池能量的方案嗎?也許解決方法只是幾納米的材料,。
03/ 使用Forge Nano ALD 原子層沉積技術(shù)提升電池效能
Forge Nano 推出了一種名為 Atomic Armor™ 的解決方案,,以解決電極結(jié)構(gòu)不穩(wěn)定的問題并從電池中釋放更多容量。
該方法采用原子層沉積(ALD) 技術(shù),,在電池電極材料表面包覆薄膜,,可實現(xiàn)厚度可控、均勻致密的納米涂層,。該技術(shù)可保護活性材料免受與電解質(zhì)的寄生反應(yīng)的影響,,當(dāng)電池在更高的電壓和溫度下工作時,電解質(zhì)的化學(xué)性質(zhì)會變得不穩(wěn)定,。
但更重要的是,,F(xiàn)orge Nano 的 原子層沉積(ALD)工藝還可以防止過度反應(yīng)。
圖 2.電化學(xué)循環(huán)前未包覆的 NCA (a) 和 Al2O3 包覆的 NCA (b) 的 TEM 圖像,,以及在 3-4.8 V 電壓下(1C/1C 充放電率)循環(huán) 100 次后分別從電池中提取的相同正極(c,d)的 TEM 圖像,。
圖 2 很好地展示了 ALD 涂層在高電壓下保持正極顆粒結(jié)構(gòu)完整性的能力。TEM 圖像顯示,,在 3.0 – 4.8V 的電壓窗口下循環(huán) 100 次 1C/1C 循環(huán)后,,未進行包覆的 NCA 顆粒出現(xiàn)了明顯的裂紋和晶體結(jié)構(gòu)退化。然而, Al2O3 ALD 涂層不僅防止了晶格的重大變化,,還阻止了表面裂紋向顆粒內(nèi)部的擴展,。
事實上,通過防止這些失效機制,,ALD 可以大幅提高電池的di一周期庫侖效率,,使電池可以在更高的電壓下工作。這不僅意味著初始容量更高,,而且可逆容量也更高,,從而使相同的電池能夠提供比以前更多的能量。
讓我們來看看使用 Forge Nano 的 Atomic Armor™ 技術(shù)升級電極材料的一些測試數(shù)據(jù),。
圖 3. 使用原始石墨負極和涂有 Atomic Armor™ 涂層的石墨負極的電池在 4.2V 電壓下循環(huán)的相對容量,。
圖 3 比較了在 4.2V 電壓下未包覆涂層的石墨負極的電池和使用 Forge Nano ALD技術(shù)包覆涂層的負極的電池的相對容量。通過使用該技術(shù)保護電極,,我們的可逆容量增加了 11%,,甚至無需在更高電壓下循環(huán)。由于電極表面的反應(yīng)不會損失鋰,,我們可以來回移動的鋰量大大增加,,從而從電池中獲得更多能量。
圖4 .未包覆涂層的 LCO 電池在 4.4V 電壓下工作時的放電容量,,耐久性循環(huán)為 0.5C/1C,,而使用相同配方進行涂層包覆的電池在 4.5V 電壓下運行時的放電容量。
圖 4 則進一步提高了這一性能,。圖 4 顯示了未進行涂層包覆的電池在 4.4V 電壓下循環(huán)時的放電容量,,以及使用 Forge Nano ALD 技術(shù)進行電極涂層包覆的電池在 4.5V 電壓下循環(huán)時的放電容量。更高的電壓運行與受保護的電極相結(jié)合,,電池的初始放電容量提高了 18%,。此外,更高的工作電壓不會影響電池的使用壽命,,這意味著使用原子盔甲技術(shù),,可以從電池中獲得更多能量,而不會犧牲電池的使用壽命,。
圖 4 中的電池是可用于消費電子應(yīng)用的電池示例,,其目標(biāo)循環(huán)次數(shù)為 200 次。如果這是一部手機,,較高的放電容量意味著一次充電可以使用兩天,,而不是一天。
04/減少鋰需求
雖然我們不一定能改變未來對鋰的需求,,但我們肯定能更有效地利用鋰,,從而較大限度地減輕鋰的開采負擔(dān),。隨著電池能夠在更高電壓下工作,可逆容量增加 10-18% 不等,,我們在不改變電池中鋰含量的情況下輸出更多的能量,。
例如,北美電池制造生態(tài)系統(tǒng)計劃到 2030 年輸出 1000 GWh 的容量,。如果每塊電池的容量只提高 10%,,那么現(xiàn)在這 1000 GWh 的工廠產(chǎn)出額定值為 1100 GWh,這將減少對多個新千兆工廠的需求,,并每年節(jié)省 10 萬噸加工鋰的原料需求,,相當(dāng)于每年節(jié)省 100 萬噸礦石開采過程中開采出的地下材料。這也相當(dāng)于每年節(jié)省 110 萬至 370 萬噸二氧化碳排放量和 180 萬至 800 萬立方米用水量,。
事實上,,根據(jù)麥肯錫公司對鋰供應(yīng)的研究,雖然我們可以在短期內(nèi)滿足鋰的需求,,但預(yù)計到 2030 年,鋰的供應(yīng)將出現(xiàn)約 40 萬噸的缺口,。圖 5 顯示了目前到 2030 年的能源和鋰需求預(yù)測,。如果所有電池都使用 Forge Nano 的 ALD 技術(shù)包覆涂層,容量的提高將減少鋰的需求量,,以目前已知的供應(yīng)量,,足以滿足到 2030 年的所有能源需求。在zui*好的情況下,,即所有電池都使用 Forge Nano ALD 技術(shù)提升電池容量,,到 2030 年,鋰可能仍然過剩,。
圖 5. 到 2030 年的鋰和能源需求以及已知的鋰供應(yīng)量,。Atomic Armor™ 基礎(chǔ)方案顯示了千兆工廠產(chǎn)量增加 10% 后的鋰需求。Atomic Armor™ 高方案顯示了產(chǎn)量增加 18% 后的鋰需求,。
通過使用 Forge Nano 的 Atomic Armor™ 技術(shù)可以有效地利用鋰,,大大減輕鋰生產(chǎn)的負擔(dān)。使得公司可以安全地提供更高的產(chǎn)能產(chǎn)出,,而不必擔(dān)心供應(yīng)鏈短缺,;作為消費者,我們也不必擔(dān)心鋰供應(yīng)短缺時會支付天價,。
讓 Forge Nano 的 Atomic Armor™ 技術(shù)成為鋰電池發(fā)揮更大效能的良藥,!