化工儀器網(wǎng)>產(chǎn)品展廳>生命科學(xué)儀器>植物生理生態(tài)儀器>植物熒光成像儀>HEXAGON-IMAGING-PAM 蜂巢矩陣葉綠素?zé)晒獬上裣到y(tǒng)
HEXAGON-IMAGING-PAM 蜂巢矩陣葉綠素?zé)晒獬上裣到y(tǒng)
- 公司名稱 上海澤泉科技股份有限公司
- 品牌 其他品牌
- 型號 HEXAGON-IMAGING-PAM
- 產(chǎn)地 德國WALZ
- 廠商性質(zhì) 代理商
- 更新時間 2025/1/14 12:16:31
- 訪問次數(shù) 1069
聯(lián)系方式:沈經(jīng)理15026947287 查看聯(lián)系方式
聯(lián)系我們時請說明是化工儀器網(wǎng)上看到的信息,,謝謝!
產(chǎn)地類別 | 進口 | 價格區(qū)間 | 面議 |
---|---|---|---|
應(yīng)用領(lǐng)域 | 環(huán)保,食品,生物產(chǎn)業(yè),農(nóng)業(yè) |
蜂巢矩陣葉綠素?zé)晒獬上裣到y(tǒng)
HEXAGON-IMAGING-PAM
葉綠素?zé)晒獬上裣到y(tǒng)的“六邊形戰(zhàn)士”
精度高,,面積大,,功能全,應(yīng)用廣,,文獻多,,數(shù)據(jù)可視化!
HEXAGON-IMAGING-PAM是德國WALZ公司最新推出的大型蜂巢矩陣葉綠素?zé)晒獬上裣到y(tǒng),。它憑借高精度的脈沖振幅調(diào)制(PAM)技術(shù),,可以對20×24cm的區(qū)域進行成像。分辨率高達1.2 MP(1000 x 1200 px, 2x2 binning技術(shù),,實際是2000×2400),,像素尺寸3.45 x 3.45 µm。
超高分辨率的基礎(chǔ)是成像區(qū)域光場的均勻性,,在設(shè)計過程中,,光源陣列中LED的位置是經(jīng)過精心布局的,以保證測量區(qū)域內(nèi)無陰影,,所有成像區(qū)域內(nèi)的樣品均勻照光,,樣品間的差異可以盡收眼底。大功率LED面板的冷卻效果非常好,,可以最大限度的延長LED的使用壽命,。
增加遠紅光(FR)LED 面板,可用于測量所研究樣品的Fo'值。
HEXAGON-IMAGING-PAM采用蜂巢矩陣式LED面板拼接技術(shù),,單個六邊形蜂巢矩陣單元之間LED的不平橫可以獨立補償,,初衷是為實現(xiàn)樣品區(qū)域的理想照明提供更優(yōu)選擇。
盡管成像區(qū)域很大,,但是它依然足夠靈活,,可以測量各種類型的樣品,如盆栽植物,,穴盤中培養(yǎng)的植物,,培養(yǎng)皿上的植物或多孔板中的藻類懸浮液。
滑動門設(shè)計,,集成安全關(guān)閉功能,,開門狀態(tài)下,飽和脈沖的強度會被抑制以保護操作人員的眼睛,。
主要功能
l 原位測量:活體植物葉綠素?zé)晒獬上?,直觀顯示樣品光合作用光能利用差異,可導(dǎo)出彩色圖像,。
l 成像功能:對Ft,、Fo、Fm,、Fv/Fm,、F、Fm’,、Y(II),、Y(NO)、Y(NPQ),、NPQ,、qN、qP,、qL,、PS/50=ETR、Inh等參數(shù)進行成像分析,。測定調(diào)節(jié)性能量耗散Y(NPQ),,反映植物光保護能力,測定非調(diào)節(jié)性能量耗散Y(NO),,反映植物光損傷程度,。
l 程序測量功能:可自動程序測量熒光誘導(dǎo)曲線、快速光曲線和暗弛豫,,也可手動測量,;在測量過程中能自動分析所有熒光參數(shù)的變化趨勢,;可以預(yù)編程進行自定義實驗流程,如模擬波動光,。
l AOI功能:可在測量前或測量后任意選擇感興趣的區(qū)域(AOI),,程序?qū)⒆詣訉x擇的AOI的數(shù)據(jù)進行變化趨勢分析,并在報告文件中顯示相關(guān)AOI的數(shù)據(jù),。所有報告文件中顯示的數(shù)據(jù)都可導(dǎo)出到EXCEL文件中,。
l 成像異質(zhì)性分析功能:對任意參數(shù)任意時間的成像,可在圖像上任意選取兩點,,軟件自動對兩點間的數(shù)據(jù)進行橫向異質(zhì)性分析,,并可導(dǎo)出到EXCEL文件中。
l 成像數(shù)據(jù)范圍分析功能:對任意參數(shù)任意時間的成像,,可分析任意兩個熒光數(shù)值之間有多少個像素點,,多少面積(cm2),。
l 突變株篩選功能:可跟據(jù)成像結(jié)果快速篩選光合,、產(chǎn)氫/油、抗逆(抗鹽,、抗旱,、抗病等)等突變株。
l 微藻毒理研究功能:可同時測量4塊96孔板,,即384個微藻樣品(對照和處理組)的光合活性,,軟件自動給出處理組樣品相對于對照組的光合抑制百分比。
應(yīng)用領(lǐng)域
l 光合作用研究:可以在*相同的條件下同時對大量樣品進行成像
l 植物病理學(xué):病斑部位(包括肉眼不可見時)成像以及病斑擴散的時空動力學(xué)
l 植物脅迫生理學(xué):肉眼不可見生物/非生物脅迫損傷的早期檢測
l 遺傳育種:出苗后大規(guī)??焖俸Y選高光合/抗旱/抗熱/抗凍/抗病等植株
l 突變株篩選:快速篩選模式植物的光合突變株,、抗逆突變株、產(chǎn)氫微藻突變株等
l 微藻毒理學(xué):不同毒物濃度多個重復(fù)的樣品一次測完,,軟件自動計算抑制比率
l 其它多種擴展研究
成像參數(shù)
Fo, Fm, F, Ft, Fm', Fv/Fm, Y(II), qL, qP, qN, NPQ, Y(NPQ), Y(NO), PS/50=ETR,Inh.等
產(chǎn)地:德國WALZ
參考文獻
數(shù)據(jù)來源:光合作用文獻Endnote數(shù)據(jù)庫,,原始數(shù)據(jù)來源:Google Scholar。
注:HEXAGON-IMAGING-PAM為最新產(chǎn)品,,暫無文獻發(fā)表,,最新研究成果可參考M-IMAGING-PAM發(fā)表文章。
Salguero-Linares, J., et al. (2022). "Robust transcriptional indicators of immune cell death revealed by spatio-temporal transcriptome analyses." Molecular Plant.
Sandoval-Ibá?ez, O., et al. (2022). "De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b6f complex in Arabidopsis." Nature communications 13(1): 4045.
Gao, Y., et al. (2022). "Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation." The Plant Cell.
Ma, L., et al. (2022). "SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato." The Plant Cell.
Szechynska-Hebda, M., et al. (2022). "Aboveground Plant-to-Plant Electrical Signaling Mediates Network Acquired Acclimation." Plant Cell.
Xing, J., et al. (2022). "The plastid-encoded protein Orf2971 is required for protein translocation and chloroplast quality control." The Plant Cell.
Dahro, B., et al. (2022). "Two AT-Hook proteins regulate A/NINV7 expression to modulate sucrose catabolism for cold tolerance in Poncirus trifoliata." New Phytologist n/a(n/a).
Ivanova, A., et al. (2022). "Mitochondrial activity and biogenesis during resurrection of Haberlea rhodopensis." New Phytologist n/a(n/a).
Li, L., et al. (2022). "Genomes shed light on the evolution of Begonia, a mega-diverse genus." New Phytologist n/a(n/a).
Moog, M. W., et al. (2022). "The epidermal bladder cell-free mutant of the salt tolerant quinoa challenges our understanding of halophyte crop salinity tolerance." New Phytologist n/a(n/a).
Zhang, Y., et al. (2022). "CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis." New Phytologist n/a(n/a).
Ashok, A., et al. (2022). "Food-chain length determines the level of phenanthrene bioaccumulation in corals." Environmental Pollution: 118789.
Cai, W., et al. (2022). "CaSWC4 regulates the immunity-thermotolerance tradeoff by recruiting CabZIP63/CaWRKY40 to target genes and activating chromatin in pepper." PLOS Genetics 18(2): e1010023.
Castro, P. H., et al. (2022). "SUMO E3 Ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis." Plant Physiology.
Che, L., et al. (2022). "Rubredoxin 1 Is Required for Formation of the Functional Photosystem II Core Complex in Arabidopsis thaliana." Frontiers in Plant Science 13.
Chen, Q., et al. (2022). "Strategies of carbon use and photosynthetic performance of the two seaweeds Gracilaria chouae and Gracilariopsis lemaneiformis under different conditions of the carbonate system." Algal Research 64: 102713.
Gao, S., et al. (2022). "The growth and photosynthetic responses of white LEDs with supplemental blue light in green onion (Allium fistulosum L.) unveiled by Illumina and single-molecule real-time (SMRT) RNA-sequencing." Environmental and Experimental Botany: 104835.
He, J., et al. (2022). "The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis." Plant Physiology.
Hsieh, W.-Y., et al. (2022). "THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis." The Plant Journal n/a(n/a).
Kareem, H. A., et al. (2022). "Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages." Environmental Pollution 303: 119069.
Li, J., et al. (2022). "Melatonin enhances the low-temperature combined low-light tolerance of pepper (Capsicum annuum L.) seedlings by regulating photosynthesis, carotenoid, and hormone metabolism." Environmental and Experimental Botany 199: 104868.
Li, T., et al. (2022). "Environmental nitrogen and phosphorus nutrient variability triggers intracellular resource reallocation in Gracilariopsis lemaneiformis (Rhodophyta)." Algal Research 66: 102778.
Lin, S., et al. (2022). "Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress." Frontiers in Plant Science 13.
Liu, K., et al. (2022). "Melatonin delays leaf senescence and improves cucumber yield by modulating chlorophyll degradation and photoinhibition of PSII and PSI." Environmental and Experimental Botany 200: 104915.
Liu, Y., et al. (2022). "Brassinosteroids promote starch synthesis and the implication in low-light stress tolerance in Solanum lycopersicum." Environmental and Experimental Botany 201: 104990.
Lu, S., et al. (2022). "VvERF17 mediates chlorophyll degradation by transcriptional activation of chlorophyll catabolic genes in grape berry skin." Environmental and Experimental Botany 193: 104678.
Lynch, T., et al. (2022). "ABI5 binding protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation." Plant Physiology.
Lynch, T., et al. (2022). "ABI5 interacting protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation." Plant Physiology.
Okereke, C. N., et al. (2022). "Impact of heat stress of varying severity on papaya (Carica papaya) leaves: major changes in stress volatile signatures, but surprisingly small enhancement of total emissions." Environmental and Experimental Botany: 104777.
Om, K., et al. (2022). "Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis." Plant Physiology.
Pan, X., et al. (2022). "Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S." BMC Plant Biology 22(1): 44.
Pandey, K., et al. (2022). "Coordinated regulation of photosynthesis and sugar metabolism in guar increases tolerance to drought." Environmental and Experimental Botany 194: 104701.
Roach, T., et al. (2022). "Acquisition of desiccation tolerance in Haematococcus pluvialis requires photosynthesis and coincides with lipid and astaxanthin accumulation." Algal Research 64: 102699.
Rotasperti, L., et al. (2022). "The barley mutant happy under the sun 1 (hus1): An additional contribution to pale green crops." Environmental and Experimental Botany 196: 104795.
Shindo, A., et al. (2022). "Interactive effects of temperature and irradiance including spectral light quality on the photosynthesis of a brown alga Saccharina japonica (Laminariales) from Hokkaido, Japan." Algal Research 66: 102777.
Sohail, H., et al. (2022). "Genome-wide identification of plasma-membrane intrinsic proteins in pumpkin and functional characterization of CmoPIP1-4 under salinity stress." Environmental and Experimental Botany: 104995.
Song, W., et al. (2022). "Functional characterization and comparison of lycopene epsilon-cyclase genes in Nicotiana tabacum." BMC Plant Biology 22(1): 252.
Szádeczky-Kardoss, I., et al. (2022). "Elongation factor TFIIS is essential for heat stress adaptation in plants." Nucleic Acids Research.
Trainin, T., et al. (2022). "Physiological characterization of the wild almond Prunus arabica stem photosynthetic capability." Frontiers in Plant Science 13.
Xue, S., et al. (2022). "Effects of enhanced UV-B radiation on photosynthetic performance and non-photochemical quenching process of intertidal red macroalgae Neoporphyra haitanensis." Environmental and Experimental Botany: 104888.
Yang, L., et al. (2022). "Salt interferences to metabolite accumulation, flavonoid biosynthesis and photosynthetic activity in Tetrastigma hemsleyanum." Environmental and Experimental Botany 194: 104765.
Yang, L., et al. (2022). "Physiological Mechanism of Exogenous 5-Aminolevulinic Acid Improved the Tolerance of Chinese Cabbage (Brassica pekinensis L.) to Cadmium Stress." Frontiers in Plant Science 13.
Zhang, J., et al. (2022). "Early evaluation of adjuvant effects on topramezone efficacy under different temperature conditions using chlorophyll fluorescence tests." Frontiers in Plant Science 13.
Zhou, X., et al. (2022). "Physiological mechanism of strigolactone enhancing tolerance to low light stress in cucumber seedlings." BMC Plant Biology 22(1): 30.
Zhu, S., et al. (2022). "Cold stress tolerance of the intertidal red alga Neoporphyra haitanensis." BMC Plant Biology 22(1): 114.
014年2月,,上海澤泉科技股份有限公司在上海浦東孫橋現(xiàn)代農(nóng)業(yè)園區(qū)投資成立了上海乾菲諾農(nóng)業(yè)科技有限公司,,建設(shè)了AgriPhenoTM “高通量植物基因型-表型-育種服務(wù)平臺”,為植物科研和育種單位提供全面的樣品收集和栽培,,實驗設(shè)計和項目合作,,以及表型數(shù)據(jù)與生物信息學(xué)分析綜合服務(wù)。平臺成功主持了上海張江國家自主創(chuàng)新示范區(qū)專項發(fā)展資金重點項目“澤泉科技高通量植物基因型-表型-育種服務(wù)平臺”,。作為主持單位或合作單位參與了上海市農(nóng)委和科委的30多項政府科研服務(wù)項目以及商業(yè)服務(wù)項目,,如科技興農(nóng)種業(yè)發(fā)展項目“農(nóng)作物分子育種的技術(shù)創(chuàng)新研究”和“青菜高通量表型圖譜標準的建立及主要性狀分析”,、科技興農(nóng)重點攻關(guān)項目“基于圖像分析及三維建模技術(shù)的黃瓜長勢快速評價方法研究”、 “蘭科觀賞花卉分子育種技術(shù)研究與產(chǎn)業(yè)化應(yīng)用”等,。為了緊追世界科技發(fā)展水平,,開啟院企合作建立研究型平臺的創(chuàng)新嘗試,上海澤泉科技股份有限公司與上海市農(nóng)業(yè)科學(xué)院,,結(jié)合雙方各自的優(yōu)勢,,于2021年5月在上海農(nóng)業(yè)科學(xué)院莊行試驗站聯(lián)合成立“上海市農(nóng)業(yè)科學(xué)院莊行綜合試驗站澤泉科技植物表型技術(shù)研究平臺”,AgriPhenoTM平臺從上海浦東孫橋現(xiàn)代農(nóng)業(yè)園區(qū)整體遷出,,并入新建的植物表型技術(shù)研究平臺,。目前平臺除擁有無人機表型平臺、溫室型和實驗室型高通量表型分析系統(tǒng)外,,還擁有現(xiàn)代化溫室,、生物學(xué)實驗室、植物生理生態(tài)測量設(shè)備,、農(nóng)業(yè)氣象測量系統(tǒng)和專業(yè)的數(shù)據(jù)庫平臺,,已經(jīng)具備了對植物、動物基因測序與植物表型研究的各類條件,??梢猿袚?dān)高通量DNA提取、基因測序服務(wù),、分子輔助育種,、植物生理生態(tài)研究等科研實驗任務(wù)。同時可以為植物功能基因組,、農(nóng)業(yè)育種家提供高通量植物基因型測試,、高通量植物表型測試和植物基因型-表型生物信息學(xué)數(shù)據(jù)分析等開放式服務(wù)。