日韩av大片在线观看欧美成人不卡|午夜先锋看片|中国女人18毛片水多|免费xx高潮喷水|国产大片美女av|丰满老熟妇好大bbbbbbbbbbb|人妻上司四区|japanese人妻少妇乱中文|少妇做爰喷水高潮受不了|美女人妻被颜射的视频,亚洲国产精品久久艾草一,俄罗斯6一一11萝裸体自慰,午夜三级理论在线观看无码

官方微信|手機版

產(chǎn)品展廳

產(chǎn)品求購企業(yè)資訊會展

發(fā)布詢價單

化工儀器網(wǎng)>產(chǎn)品展廳>生命科學(xué)儀器>酶標儀/微孔板儀器>酶標儀>BYOSENS LYTE96 BYOSENS LYTE96多模式微孔板檢測儀免標記系統(tǒng)

BYOSENS LYTE96 BYOSENS LYTE96多模式微孔板檢測儀免標記系統(tǒng)

具體成交價以合同協(xié)議為準

聯(lián)系方式:李勝亮查看聯(lián)系方式

聯(lián)系我們時請說明是化工儀器網(wǎng)上看到的信息,,謝謝!


世聯(lián)博研(北京)科技有限公司(Bio Excellence International Tech Co.,Ltd)簡稱為世聯(lián)博研,。世聯(lián)博研是一家集進口科研儀器代理銷售以及實驗技術(shù)服務(wù)于一體的技術(shù)公司,。世聯(lián)博研專注生物力學(xué)和3D生物打印前沿科研設(shè)備代理銷售及科研實驗項目合作服務(wù),內(nèi)容涵蓋了血管力學(xué)生物學(xué),、生物力學(xué)建模仿真與應(yīng)用,、細胞分子生物力學(xué)、組織修復(fù)生物力學(xué),、骨與關(guān)節(jié)生物力學(xué),、口腔力學(xué)生物學(xué)、眼耳鼻咽喉生物力學(xué),、康復(fù)工程生物力學(xué),、生物材料力學(xué)與仿生學(xué)、人體運動生物力學(xué)等生物力學(xué)研究以及生物材料打印,、打印樣品生物力學(xué)性能測試分析的前沿領(lǐng)域科研利器和科研服務(wù),。

世聯(lián)博研的客戶范圍:
科研院所單位、生物醫(yī)學(xué)科研高校,、醫(yī)院基礎(chǔ)科研單位等,。

世聯(lián)博研公司代理的品牌具有:
1)近10年長期穩(wěn)定的貨源
2)以生物力學(xué)、細胞力學(xué),、細胞生物分子學(xué),、生物醫(yī)學(xué)組織工程、生物材料學(xué)為主,,兼顧其他相關(guān)產(chǎn)品線
3)提供專業(yè)產(chǎn)品培訓(xùn)和銷售培訓(xùn)
4)良好的技術(shù)支持
5)已成交老客戶考證
6)每年新增的貨源,。

細胞應(yīng)力加載儀,3細胞打印機,NanoTweezer新型激光光鑷系統(tǒng),PicoTwist磁鑷,美國NeuroIndx品牌Kuiqpick單細胞捕獲切割系統(tǒng)

簡單介紹新一代無標記酶標儀 BYOSENS LYTE96*臺便攜式無標記酶標儀  該BYOSENS LYTE96*臺便攜式無標記酶標儀是*款便攜式無標記酶標儀。根據(jù)康寧Epic系統(tǒng)它被設(shè)計為讀出96孔板,,并進行了廣泛的細胞化驗,。結(jié)合無線連接和集成電池結(jié)合,lyte96的緊湊的結(jié)構(gòu)使得它*移動并易于在液體處理系統(tǒng)集成,。 The next generation label-free reader BYOSENS LYTE96 THE

*臺便攜式無標記酶標儀,BYOSENS LYTE96 PORTABLE LABEL-FREEMICROPLATE READER的詳細介紹

 

 

 

BYOSENS LYTE96*臺便攜式無標記酶標儀(便攜微孔板檢測器)

 

 

 

LYTE96便攜式無標記酶標儀(便攜微孔板檢測器)是基于康寧Epic系統(tǒng)設(shè)計的,,可進行一系列細胞內(nèi)試驗的96孔微孔板讀出設(shè)備。lyte96將無線連接和集成電池結(jié)合放置到一個緊湊的結(jié)構(gòu)中,使得它方便移動和易于整合進液體處理系統(tǒng),。主要是對系列廣泛的生物反應(yīng)進行檢測,,如信號轉(zhuǎn)導(dǎo)、細胞凋亡,、細胞毒素,,貼壁、增殖和擴散等,。

lyte96無標記便攜生物傳感器的工作原理是基于折射波導(dǎo)光柵光學(xué)生物傳感器,。傳感器結(jié)構(gòu)由一個三層系統(tǒng):玻璃基板、薄膜光波導(dǎo)薄膜與光柵結(jié)構(gòu),,和細胞/生物分子層,。當寬譜帶光照射時,生物傳感器反映光的特定波長是接近傳感器表面折射率的靈敏函數(shù),。通過 Epic系統(tǒng)測量細胞內(nèi)的粘合物事件或細胞內(nèi)蛋白質(zhì)運動引起反射光的波長偏移,。形成一系列波長偏移、波長,、強度,、時間之間的函數(shù)來進行分析。

lyte96無標記便攜生物傳感器的優(yōu)勢:

移動性: lyte96創(chuàng)新設(shè)計之處是給使用者帶來了極大的靈活性,。緊湊的結(jié)構(gòu)結(jié)合了無線連接和集成的電池使lyte96方便移動,。這使得它對于研究人員和開發(fā)人員來說成為一個*的分析工具。

易用性: lyte96簡化了研發(fā)實驗室中的過程,。實驗開始時不需要復(fù)雜的預(yù)置,,直觀輔助的軟件保證了高水平的易用性。由于技術(shù)體系,,lyte96幾乎是免費維護,。

數(shù)據(jù)分析:根據(jù)已建立的康寧Epic系統(tǒng),高敏性的lyte96可進行寬光譜的細胞內(nèi)試驗,,從開始試驗到幾天的時間都可以提供實時數(shù)據(jù)以便研究,。

 

 

 

 

 

 

 

 

 

 

1. 萊特96無標記便攜生物傳感器

 

 

2.測量原理示意圖

 

1:在增殖試驗中,用lyte96實時監(jiān)測細胞數(shù)量,,發(fā)現(xiàn)細胞數(shù)目和傳感器表面的質(zhì)量是成正比的,。微孔板和lyte96放置在加濕的培養(yǎng)箱內(nèi)通過藍牙無線連接電腦。經(jīng)典增殖試驗中,,A431細胞加入到孔中,,記錄37?C的細胞生長。

 

2:動態(tài)質(zhì)量再分配(DMR)的測定

像許多其他的信號檢測,,GPCR測定動態(tài)質(zhì)量再分配過程中(DMR)是由lyte96無標記傳感器測定的,。和A431細胞緩激肽試驗一樣,這個試驗是在室溫下進行,。得到的EC500.45 nm,,這類似于從文獻的結(jié)果。

參考文獻:

Nazirizadeh, Y. et al. Intensity interrogation near cutoff resonance for label-free cellular profiling. Sci. Rep. 6, 24685 (2016).

 

French, J. B. et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733 (2016).

 

Camp, N. D. et al. Dynamic mass redistribution reveals diverging importance of PDZ-ligands for G protein-coupled receptor pharmacodynamics. Pharmacological. Research, 105, 13-21 (2016).

 

Klein, A. B., Nittegaard-Nielsen, M., Christensen, J. T., Al-Khawaja, A., & Wellendorph, P. Demonstration of the dynamic mass redistribution label-free technology as a useful cell-based pharmacological assay for endogenously expressed GABAA receptors. Med. Chem. Commun., 7, 426–432 (2016).

 

Klepac, K. et al. The Gq signalling pathway inhibits brown and beige adipose tissue.Nat. Commun. 7, 10895 (2016).

 

Hamamoto, A., Kobayashi, Y. & Saito, Y. Identification of amino acids that are selectively involved in Gi/o activation by rat melanin-concentrating hormone receptor 1. Cell. Signal27, 818–827 (2015).

 

Navarro, G. et al. Orexin – Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine. J. Neurosci. 35, 6639–6653 (2015).

 

Wang, J. et al. RSC Advances danshen using a label-free cell phenotypic assay. RSC Adv. 5, 25768–25776 (2015).

 

Rex, E. B. et al. Phenotypic Approaches to Identify Inhibitors of B Cell Activation. J. Biomol. Screen. 20, 876–886 (2015).

 

Vinals, X. et al. Cognitive Impairment Induced by Delta9- tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB 1 and Serotonin 5-HT 2A Receptors. PLOS Biol., e1002194 (2015).

 

Fjellstr?m, O. et al. Novel Zn 2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents. PLoS One, 0145849 (2015).

 

Shridhar, N. et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 6, 10156 (2015).

 

Marada, S. et al. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling. PLOS Genet., 1005473 (2015).

 

Brust, T. F., Hayes, M. P., Roman, D. L. & Watts, V. J. New functional activity of aripiprazole revealed: robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling. Biochem Pharmacol. 93, 85–91 (2015).

 

Camp, N. D. et al. Individual protomers of a G protein-coupled receptor dimer integrate distinct functional modules. Cell Discov. 1, 15011 (2015).

 

 Beckert, U. et al. Biochemical and Biophysical Research Communications cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects. Biochem. Biophys. Res. Commun. 451, 497–502 (2014).

 

Otte, M. et al. CXCL14 is no direct modulator of CXCR4. FEBS Lett. 588, 4769–4775 (2014).

 

Liebscher, I. et al. A Tethered Agonist within the Ectodomain Activates the Adhesion G Protein-Coupled Receptors GPR126 and GPR133. Cell Rep. 9, 2018–2026 (2014).

 

Fang, Y. Label-Free Cell Phenotypic Drug Discovery. Comb. Chem. High Throughput Screen. 17, 566–578 (2014).

 

Fang, Y. Label-free drug discovery. Front. Pharmacol. 5, 1–8 (2014).

 

Febles, N. K., Ferrie, A. M. & Fang, Y. Label-Free Single Cell Kinetics of the Invasion of Spheroidal Colon Cancer Cells through 3D Matrigel. Anal. Chem. 86, 8842–8849 (2014).

 

Lee, M. Y. et al. A Comparison of Assay Performance Between the Calcium Mobilization and the Dynamic Mass Redistribution Technologies for the Human Urotensin Receptor. Assay Drug Dev. Technol. 12, 361–368 (2014).

 

Balenga, N. A. et al. Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling. Br. J. Pharmacol. 171, 5387–5406 (2014).

 

Carter, R. L. et al. Dynamic mass redistribution analysis of endogenous b -adrenergic receptor signaling in neonatal rat cardiac fibroblasts. Pharma. Res. Per.2, 1–16 (2014).

 

Teutsch, C. et al. Detection of free fatty acid receptor 1 expression?: the critical role of negative and positive controls. Diabetologia 57, 776–780 (2014).

 

Meister, J. et al. The G Protein-coupled Receptor P2Y 14 Influences Insulin Release and Smooth Muscle Function in Mice. J. Biol. Chem. 289, 23353–23366 (2014).

 

Andradas, C. et al. Targeting CB 2 -GPR55 Receptor Heteromers Modulates Cancer Cell Signaling. J. Biol. Chem. 289, 21960–21972 (2014).

 

Schmitz, J. et al. Dualsteric Muscarinic Antagonists ? Orthosteric Binding Pose Controls Allosteric Subtype Selectivity. J. Med. Chem. 57, 6739–6750 (2014).

 

Mackenzie, A. E. et al. The Antiallergic Mast Cell Stabilizers Lodoxamide and Bufrolin as the First High and Equipotent Agonists of Human and Rat GPR35. Mol. Pharmacol.85, 91–104 (2014).

 

Chen, X. et al. Rational Design of Partial Agonists for the Muscarinic M1 Acetylcholine Receptor. J. Med. Chem. 58, 560–576 (2014).

 

Ferrie, A. M., Zaytseva, N. & Fang, Y. Divergent Label-free Cell Phenotypic Overexpressed b2-Adrenergic Receptors. Sci. Rep. 4, 3828 (2014).

 

Orgovan, N. et al. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci. Rep. 4, 4034 (2014).

 

Sun, H. et al. Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel. Sci. Rep. 4, 4934 (2014).

 

 Sundstr?m, L., Greasley, P. J., Engberg, S., Wallander, M. & Ryberg, E. Succinate receptor GPR91 , a G ai coupled receptor that increases intracellular calcium concentrations through PLC b. FEBS Lett. 587, 2399–2404 (2013).

 

Fang, Y. Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J. Pharmacol. Toxicol. Methods 67, 69–81 (2013).

 

Ahmedat, A. S. et al. Pro-fibrotic processes in human lung fibroblasts are driven by an autocrine / paracrine endothelinergic system. Br. J. Pharmacol. 168, 471–487 (2013).

 

Morse, M., Sun, H., Tran, E., Levenson, R. & Fang, Y. Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family. BMC Pharmacol. Toxicol. 14, 1–18 (2013).

 

Online, V. A., Ferrie, A. M., Wang, C. & Fang, Y. Integrative Biology identifies an intracellular signalling wave mediated through the b2-adrenergic receptor. Integr. Biol. 5, 1253–1261 (2013).

 

Christiansen, E. et al. Discovery of a Potent and Selective Free Fatty Acid Receptor 1 Agonist with Low Lipophilicity and High Oral Bioavailability. J. Med. Chem. 56, 982–992 (2013).

 

Hennig, D. et al. Novel Insights Into Appropriate Encapsulation Methods for Bioactive Compounds Into Polymers: A Study With Peptides and HDAC Inhibitors.Macromol. Biosci. 1–12 (2013).

 

Deng, H., Sun, H. & Fang, Y. Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M3 receptors. J. Pharmacol. Toxicol. Methods 68, 1–24 (2013).

 

Zaytseva, N. et al. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion. Sens. Actuators B Chem. 1–17 (2013).

 

Zhao, H., French, J. B., Fang, Y. & Benkovic, S. J. The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. Chem. Commun. (Camb). 49, 1–17 (2013).

 

Cho, Y. & Baldán, A. Quest for New Biomarkers in Atherosclerosis. Mo. Med. 110, 325–330 (2013).

 

Hennen, S. et al. Decoding Signaling and Function of the Orphan G Protein– Coupled Receptor GPR17 with a Small-Molecule Agonist. Sci. Signal. 6, 1–33 (2013).

 

Deng, H. & Fang, Y. The Three Catecholics Benserazide, Catechol and Pyrogallol are GPR35 Agonists. Pharmaceuticals 6, 500–509 (2013).

 

Deng, H., Wang, C. & Fang, Y. Label-free cell phenotypic assessment of the molecular mechanism of action of epidermal growth factor receptor inhibitors. RSC Adv. 3, 10370–10378 (2013).

 

Schrage, R. et al. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. Br. J. Pharmacol. 169, 357–370 (2013)



化工儀器網(wǎng)

采購商登錄
記住賬號    找回密碼
沒有賬號,?免費注冊

提示

×

*您想獲取產(chǎn)品的資料:

以上可多選,勾選其他,,可自行輸入要求

個人信息:

溫馨提示

該企業(yè)已關(guān)閉在線交流功能